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In this paper, we investigate several musical morphologies that can be represented as paths in abstract
graphs. Our examples come from questions posed by composers in the compositional process. In partic-
ular, we focus on Hamiltonian paths and cycles, which are central to graph theory. Our results show the
circumstances in which such a path exists in the graphs derived from these musical ideas.

Keywords: graph theory; musical form; musical shape; musical structure; morphology; Hamiltonicity;
Tom Johnson

1. Introduction

Composers often implement enumerative processes to create musical morphologies (that is, an
ordered set of musical elements). Apt examples of such techniques can be found in the work of
Tom Johnson; notably, The Chord Catalogue (Johnson 1986), which enumerates through all 8178
possible chords of one octave. The Chord Catalogue is an example of a chordal morphology that
is non-repeating and exhaustive. That is, every possible chord is played once and only once. What
is perhaps the most interesting (and often least discussed/most overlooked) aspect of the piece
is how the chords are ordered. First, all two-note chords are presented, then three, then four, etc.
Within each of these sets, the chords are sorted in colexicographical order (where (a, b) ≤ (a′, b′)
if and only if b < b′ or b = b′ and a ≤ a′). For example, the order of the 2-note chords are given
in Figure 1.

In this paper, we discuss several non-repeating, exhaustive chordal and timbral morphologies
with a focus on the ordering of the musical elements. In particular, we examine morphologies
in which the number of elements that stay the same from event to event is specified. Each of
our examples can be represented by a Hamiltonian path or cycle through a graph. Hamiltonian
paths and cycles pass through each vertex once and only once, but a Hamiltonian cycle also ends
at the start vertex. The vertices of the graph represent all chordal or timbral possibilities, given
certain combinatorial constraints and the edges represent possible movements from one event to
the next that satisfy given morphological constraints.

This paper aims to provide interesting material for both musicians and mathematicians. We
have structured it so that the mathematical and musical parts can be read independently. After
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2 A. Akhmedov and M. Winter

Figure 1. The two-note chords in Johnson’s The Chord Catalogue.

long consideration, we decided that it was most effective to present both the musical and math-
ematical ideas in such a way that they are not tempered for any given audience. We hope that
by doing so, we better illustrate the fact that musical questions can result in rich mathematical
results and vice-versa.

In the next section, we start by discussing the musical and mathematical motivations of using
graph theory to represent musical shapes and structures. Section 3 juxtaposes the musical and
mathematical definitions of each of our examples. As mentioned above, either the musical or
mathematical definitions can be read alone but we hope that presenting them side-by-side will
provide insight into the intrinsic connections between the two domains. Section 4 gives further
mathematical preliminaries needed for the proofs of the main theorems. The main results of the
paper are Theorems 5.5, 5.14, 5.16, and 5.18, where we prove that certain graphs derived from
musical problems are Hamiltonian or admit a Hamiltonian path. These theorems are introduced
and proved in Section 5. This section, especially the proofs, are intended primarily for a mathe-
matical audience. We conclude with a brief discussion regarding open musical and mathematical
questions that were engendered by this research.

2. Mathematical and musical motivations

In Meta + Hodos (Tenney 1986), James Tenney suggests that musical form consists of two pri-
mary components: shape and structure. The former being the relationships between adjacent
elements (in time) and the latter the relationships of component parts to other parts and the
whole (irrespective of time). While these are cogent definitions, they are not well-defined math-
ematically. Tenney, in collaboration with Larry Polansky, later developed a simple computer
model of temporal gestalt perception using principles set forth in Meta+Hodos. In their article,
‘Hierarchical temporal gestalt perception in music: a metric space model’ (Tenney and Polansky
1980), the authors explain the model and how they represent shape and structure in lay terms,
but do not give exact mathematical formalization. Later, in “Morphological Metrics” (Polan-
sky 1996), which examines several ways of comparing musical shapes/morphologies, Polansky
gives a strict mathematical definition of a morphology (along with musical applications).

A morphology (morph) is an ordered set M . The elements of M are identified as Mi, where i goes from 1 to L. L
is the length of M · · · Morphs are ordered shapes such as melodies, duration series, harmonic orderings, spectra or
statistical measures of formal segregation like the mean pitches of sections of a piece.

As will be shown in more detail later, graph theory provides a convenient means of represent-
ing musical structure (the other factor of musical form according to Tenney). In short, the vertices
of a graph represent musical elements and the edges represent relations between the elements.
Edges can be induced by a priori definitions designed by the composer (as in the examples
that follow) or as a posteriori observations based on the perception/experience/analysis of a
piece. We call a definition that induces a connection between structural elements a morphological
constraint.
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Journal of Mathematics and Music 3

Figure 2. The neo-Riemannian Tonnetz.

Figure 3. Richard Cohn’s reduction of bars 268–79 from the first movement of Brahm’ Concerto for Violin and Cello.

Not only can a graph represent a musical structure, but graph theory also provides a formal
link between shape and structure because a musical morphology can be represented as a path in
a graph.

Perhaps the most canonical example of the connection between graph theory and music is
the Tonnetz (or tone-network). Figure 2 shows the neo-Riemannian Tonnetz where pitches are
connected if they are related by either a major third, a minor third, or a perfect fifth. Movement
by edge-adjacent triads satisfy the parsimonious voice leading as two pitches stay the same while
the other moves by a tone or a semitone. The Tonnetz conveniently provides a graph-based model
of harmonic motion between chords as subject to the fundamental operations of neo-Riemannian
music theory: P (substituting a triad by its parallel), R (substituting a triad by its relative), and
L (substituting a triad for its leading tone). Figure 3 shows an example of what Richard Cohn
calls a ‘maximally smooth cycle’ (Cohn 1996). One could easily chart this progression on the
neo-Riemannian Tonnetz and, as will be shown later, many of our examples can be related to
Cohn’s notion of a maximally smooth cycle.

Another, more recent, example is the harmonic lattice as employed by composers James
Tenney and Ben Johnston. In a harmonic lattice (see Figure 4), vertices are frequency ratios
with respect to a reference fundamental (1/1). The number of dimensions/axes correspond to
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4 A. Akhmedov and M. Winter

Figure 4. From James Tenney’s John Cage and the theory of harmony (Tenney 1984): a harmonic lattice in the 3, 5
plane of harmonic space.

the number of prime factors required to specify the frequency ratios and two frequency ratios are
connected if they differ by one prime factor in either the numerator or denominator. Tenney sug-
gests that the degree of separation between any two points on the lattice models our perception
of distance in harmonic space. He has also written several pieces such as Changes for 6 harps
(1985), Water on the Mountain . . . Fire in Heaven for 6 guitars (1985), and Arbor Vitae for string
quartet (2006), where harmonic movement is determined by a random walk in harmonic space
(for more details on these pieces, see Fiore 2013, Tenney 1987, Winter 2007, respectively).

Composers have long used mathematics to understand, analyze and generate music. Still,
despite the strong precedence of the use of the Tonnetz to map triadic motion and the harmonic
lattice to represent distance in harmonic space, the understanding of the connections between
graph theory and music — especially beyond the study of more traditional tonal harmony — is
still in progress (for more examples, see Crans, Fiore, and Satyendra 2008, Douthett and Stein-
bach 1998, Gollin 2000, Hook 2007, Hyer 1995, Lewin 1990; 2007, Mazzola 2003, Morris 2010,
Tymoczko 2011, Waller 1978, Walton 2010, Yust 2006).

In this paper, even though we hope to clearly explicate certain connections between music and
graph theory and even though our examples can be related to certain aspects of neo-Riemannian
analysis, we intentionally do not discuss the relation of elements to one another (as opposed to
the functionality of musical elements defined in the theories of tonal harmony). In a way, we are
presenting these ideas more in the abstract. In particular, we focus on graphs where the edges
are induced by the number of common elements between vertices and Hamiltonian cycles on
these graphs, which, as mentioned above, have the statistical property that every vertex occurs
once and only once. The proofs of Hamiltonicity (the existence of a Hamiltonian cycle) on the
defined graphs show that finding a given musical morphology is possible with little regard for the
phenomenological implications of these compositional techniques or even how to find the paths
(which is necessary in the compositional process). With that said, it is our contention that the
musical shapes and structures examined in the following examples exhibit perceptual cohesion
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Journal of Mathematics and Music 5

by virtue of a kind of conceptual clarity that is recapitulated by their rather simple, albeit very
deep, mathematical formalizations.

The examples in this paper also elucidate two important facts: that graph theory is particularly
applicable to the study of musical form and that there exists several musically motivated ques-
tions that can be of interest to mathematicians working in the field of graph theory. Further, we
feel that the most effective way of better understanding the intersection between the two domains
is via collaborations between mathematicians and musicians. This is exemplified through our per-
sonal collaborative experience and the fact that Hamiltonicity (the main focus of this paper) is
central to the study of graphs even though the questions in this paper were originally musically
motivated for compositional purposes.

The genesis of this research started with a musician’s compositional problem (and a corre-
sponding inability to express the problem mathematically) and a mathematician’s mindset that
interesting problems can be found in unlikely places. As we worked together, we developed
a mode of communication where we could address our individual interests and problems. The
result was a series of new musical works, several mathematical proofs, and a clear formalization
of a particular way of connecting graph theory and musical form. The rather innocuous cry for
help from the composer developed into much more. It warrants mention that while this publica-
tion post-dates the second author’s dissertation entitled, “Structural Metrics: an Epistemology”
(Winter 2010), our collaboration on these problems was actually the foundation for the disserta-
tion (which goes beyond graph theory into yet other fields of mathematics such as algorithmic
information theory). The dissertation actually cites the preprint of this paper. Point being is that
we feel the connections between mathematics and music should be continually examined and
re-examined with the hope to uncover deep problems in both fields.

3. Musical examples and associated graphs

Below, we define and motivate our main objects of study musically and mathematically, graphs
Tn,k,l, Cn,k,l, Jn, and Pn. The graphs are presented in the order that we worked on them, however,
this order also serves a pedagogical trajectory. The Cn,k,l-graphs were derived in consideration
of both Tn,k,l and another graph Jn,k,l defined by Tom Johnson. All of the examples, including
Jn and Pn, can be related to the traditional concept of the Tonnetz (as described above). The
graphs Jn and Pn are motivated by an idea similar to Cohn’s notion of maximally smooth cycles.
However, between triads, one pitch stays the same and the other two move by contrary motion by
a semitone. It is worth noting that we in no way suggest that these necessarily have application
in neo-Riemannian analysis. Our musical examples are all from literature written in the last 10
years. The pieces (and thus the vertices in each graph) fully exhaust a combinatorial constraint
that is not subject to any filtering based on functional harmony. For example, the vertices of Jn

and Pn can be any triad and not necessarily those whose structure is based on major and minor
thirds or any other intervallic constraint. Finally, throughout, we use the word ‘pitch’ to denote
any pitch and not necessarily a pitch-class. We do not assume octave equivalence, however most
of the graphs can be limited to a 12-tone set within one octave. Only Jn and Pn specifically refer
to a set of pitches. As for the others, the numbers or indices of the tuple can be bijectively mapped
onto any set of distinct pitches.

3.1. Timbral graph Tn,k,l of voicings for a chord with k pitches using n instruments where l
pitches are assigned the same instrument in both voicings of any adjacent pair

We define a timbral morphology that enumerates without repetition through all timbral combi-
nations of an arbitrary static chord, given a morphological constraint that defines the number of
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6 A. Akhmedov and M. Winter

Figure 5. Score excerpt of the first 10 chords of maximum change which is generated from T4,4,0 (note that from
measure to measure each pitch is passed to a different instrument).

pitches played by the same instrument from chord to chord. That is, the same chord is repeated
but the mapping of instruments to pitches changes. Such a morphology is analogous to a Hamil-
tonian path in the following graph. Each vertex represents a k-tuple populated with symbols
from an alphabet of a given size (repeats in the tuple are allowed because we assume that
each instrument can perform any number of pitches at once). Edges are induced between ver-
tices that satisfy a morphological constraint, defined as the number of positions populated by
the same symbol from tuple to tuple. For our purposes, each position in the tuple represents
a pitch in the arbitrary static chord to which an instrument (represented by a unique symbol
from the alphabet) is assigned. We denote this graph as Tn,k,l where n is the number of dis-
tinct timbres/instruments (the alphabet size), k is the number of pitches in the given chord (the
tuple size), and l is the number of pitches that are played by the same instrument from chord
to chord.

For example, the piece, maximum change (Winter 2007), is an example of T4,4,0. In maximum
change, a vertex represented by (1, 2, 3, 4) may denote that C, D, E, F� be performed by crotales
(1), glockenspiel (2), chimes (3), and piano (4), respectively. The morphological constraint is
that each pitch is assigned a different instrument upon each successive event (see Figure 5 for
the first 10 chords of maximum change). For example, the vertex representing (1, 2, 3, 4) is con-
nected via edges to (2, 1, 1, 1), (2, 3, 2, 2), etc. This graph has 256 vertices representing all timbral
combinations of a static chord with 4 different pitches played by 4 instruments of distinct tim-
bre. The 10368 edges are induced by the morphological constraint of maximum timbral change
(total derangement) from event to event. Since this graph can be shown to be Hamiltonian, a
non-repeating, exhaustive enumeration of these timbral combinations, given the morphologi-
cal constraint is possible. We show that Tn,k,l is Hamiltonian for all n ≥ 3 and k ≥ l + 1 (See
Theorem 5.5).

Mathematical Definition of Tn,k,l. Let n, k, l be non-negative integers satisfying the condition
k ≥ max{1, l}. The set of vertices of Tn,k,l consists of the set of all k-tuples (x1, x2, . . . , xk) where
xi ∈ {1, 2, . . . , n}. Two such k-tuples α = (x1, x2, . . . , xk) and β = (y1, y2, . . . , yk) are connected
by an edge if and only if xi = yi for exactly l values of i ∈ {1, 2, . . . , k}. We also will denote the
graph Tn,k,0 by Tn,k (an example of T3,2 is given in Figure 6). In Theorem 5.5, we will prove that
the timbral graph Tn,k,l is Hamiltonian for all n ≥ 3 and k ≥ l + 1.
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Journal of Mathematics and Music 7

Figure 6. Graph of T3,2 with a Hamiltonian cycle (in bold).

3.2. Chordal Cn,k,l -graphs with chords of size k from n possible pitches where l pitches are
assigned the same instrument in both chords of any adjacent pair

Before introducing Cn,k,l-graphs, we explain a related chordal morphology proposed by Tom
Johnson in ‘Musical questions for mathematicians’ (Johnson 2005a). Johnson’s morphology
enumerates through chords of equal size in which the morphological constraint is the number
of pitches that change, or conversely, repeat, from chord to chord. He gives an example stating,
“A five-note scale contains

(5
3

) = 10 three-note chords. To have maximum harmonic movement,
one might wish to require that there be two new notes as one passes from one chord to another.”
Such a morphology is analogous to a Hamiltonian path in a graph we denote as Jn,k,l. In Jn,k,l,
each vertex is a k-element subset of some specified set of n possible pitches (alphabet size),
k is the number of pitches in the chords (set size), and l is the number of pitches that repeat
from chord to chord. As opposed to Tn,k,l, in Jn,k,l, symbols from the alphabet represent pitches
rather than instruments and duplicates in a k-set are not allowed, for otherwise the chord would
have duplicate pitches. Johnson’s aforementioned example, J5,3,1, is isomorphic to the Petersen
graph and contains a Hamiltonian path but not a cycle (see Figures 7 and 8). Coincidentally, the
instance of Jn,k,l where l = k − 1 is well known in mathematics as a Johnson Graph (after the
mathematician Selmer M. Johnson). Of particular interest is the case of l = 0, called a Kneser
Graph, the Hamiltonicity of which is an open, difficult problem.

As an alternate method to approach the general Hamiltonicity problem of Jn,k,l, we explore
the Hamiltonicity of a variant graph that represents a chordal morphology with the following
morphological constraint. Any number of pitches less than the chord size may repeat from chord
to chord, but a certain number of them must be played by the same instrument. In this setting,
each instrument plays exactly one pitch of the chord and no pitch is simultaneously played by
two instruments. We call such a graph a Cn,k,l-graph where n is the number of possible pitches, k
is the chord size, and l is the number of pitches taken by the same instrument from chord to chord.
Positions within the tuple indicate a timbre or instrument to which a pitch, indicated by a unique
symbol from the symbol set, is assigned. This is the exact opposite of Tn,k,l, and as with Jn,k,l,
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8 A. Akhmedov and M. Winter

Figure 7. J5,3,1 and a Hamiltonian path.

Figure 8. Chordal morphology of J5,3,1, where 1, 2, 3, 4, and 5 are mapped to C, D, E, F, and G, respectively.

duplicates within a tuple are not allowed. Further, since the enumeration is through all chordal
possibilities with chords of size k, permutations of any given tuple are considered representatives
of which only one will occur in the graph. For Cn,k,l-graphs, while (1, 2, 3), (1, 3, 2), (2, 1, 3),
(2, 3, 1), (3, 1, 2), and (3, 2, 1) each represent a different timbral arrangement of the same chord,
only one of them will occur because the same group of pitches will never occur twice in the
morphology. For example, if (1, 2, 3) occurs, all other permutations of that tuple will not be
used. Note that the choice of representatives greatly alters the edges of the graph.

A Cn,k,l-graph can be viewed in relation to Jn,k,l. In Jn,k,l, order does not matter so derangements
are not allowed, but in a Cn,k,l-graph, order matters and derangements are allowed. For example,
the vertices representing (1, 2, 3, 4) and (1, 3, 2, 5) are connected in a C5,4,1-graph. As order does
not matter for Jn,k,l, the corresponding unordered sets of {1, 2, 3, 4} and {1, 2, 3, 5} are connected
in J5,4,3 but not in J5,4,1. So in a C5,4,1-graph, even though one element is fixed, the two vertices
actually have k − 1 elements in common as in J5,4,3. If one were to limit the number of elements
in common from chord to chord or vertex to vertex in a Cn,k,l-graph, the graph would become
harder to prove Hamiltonian. Without putting limits on the number of elements in common from
vertex to vertex (they can be anywhere from l to k − 1), we show in Theorem 5.14 that for some
choice of representatives, a certain Cn,k,l-graph is Hamiltonian for all n ≥ 4, n ≥ k + 1, k ≥ 2l
(an example of a Cn,k,l-graph and corresponding musical morphology are given in Figures 9
and 10).

Mathematical Definition of a Cn,k,l-graph. Similarly to the musical definition above, we first
give the definition of Jn,k,l. Let 0 ≤ l ≤ k ≤ n. The set of vertices of Jn,k,l consists of all k-subsets
of the set {1, . . . , n}. Two k-subsets are connected by an edge if and only if their intersection has
size l, i.e. it is an l-subset of {1, . . . , n}.
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Journal of Mathematics and Music 9

Figure 9. Graph and Hamiltonian path of a C5,3,1-graph.

Figure 10. Chordal morphology of a C5,3,1-graph, where 1, 2, 3, 4, and 5 are mapped to C, D, E, F, and G, respectively.

A Cn,k,l-graph is defined as follows. Let 0 ≤ l ≤ k ≤ n where k ≥ 1. Let also An =
{1, 2, . . . , n}, and let An,k be the set of all ordered k-tuples (x1, x2, . . . , xk), xi ∈ An, xi �= xj for
all i �= j. A choice of representatives π is a subset of An,k such that for each k-subset S of An, π

contains exactly one permutation of S. This permutation will be denoted by π(S).
The set of vertices of a Cn,k,l-graph is in bijective correspondence with the set of all k-subsets

of An. The set of edges will depend on the choice of representatives. Let π be a choice of repre-
sentatives, and let α, β be two distinct k-subsets, π(α) = (x1, x2, . . . , xk), π(β) = (y1, y2, . . . , yk).
Then, in the graph Cn,k,l(π), the vertices α and β are connected by an edge if and only if xi = yi

for exactly l values of i ∈ {1, 2, . . . , k}. For brevity, we will denote the graph Cn,k,0(π) by Cn,k(π).
Thus, in a Cn,k-graph, two k-tuples are connected by an edge if and only if the entries differ at
every spot. If two ordered k-tuples from An,k differ at every spot (entry), then we will say that
each one is a total derangement of the other.

In Theorem 5.14, we will prove that for all non-negative integers n, k and l, with n ≥
max{4, k + 1} and k ≥ max{2l, 1}, there is a choice of representatives π such that Cn,k,l(π) is
Hamiltonian.
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10 A. Akhmedov and M. Winter

Example 3.1 (Two Cn,k,l-graphs)

(1) Let n = 3, k = 2, l = 1, and let π be the following choice of representatives: π({1, 2}) =
(1, 2), π({2, 3}) = (2, 3), π({1, 3}) = (3, 1). Then the graph C3,2,1(π) is easily seen to be
isomorphic to the graph with 3 vertices and no edges.

(2) Let π0 denote the choice of representatives defined as follows: for every k-subset
{x1, x2, . . . , xk}, π0({x1, x2, . . . , xk}) = (y1, y2, . . . , yk) where y1 < y2 < · · · < yk . π0 will be
called the natural choice of representatives. It is easy to see that C3,2,1(π0) is isomorphic to
the tree with 3 vertices (such a tree is unique up to isomorphism). The graph C4,2,1(π0) is a
connected graph with 6 vertices and 8 edges, in particular, it is not a tree.

3.3. Chordal graphs Jn and Pn of chords with 3 pitches from a set of n possible pitches
where one pitch stays the same and the others move by a semitone in contrary motion
between adjacent chords

In Tom Johnson’s piece, Trio (Johnson 2005b), the musical morphology is derived from a Hamil-
tonian path in a graph where vertices are analogous to chords with three pitches represented by
numbers from 0 to 48, where middle C equals 24. The numbers of each chord are distinct parti-
tions (without repetitions) of 72. That is, the constituent numerical representation of the pitches
of each chord sum to 72. The edges are induced by the morphological constraint that from chord
to chord, one pitch must remain the same while the other pitches move by a semitone in contrary
motion. Figure 11 shows the final morphology with the numeric representation of the pitches
in each chord. Note that this graph does not show all the edges induced by the morphological
constraint. Figure 12 shows the first system of the score.

The final graph we investigate is a generalization of the above graph, which we define as Jn

where n is the size of the integer to be partitioned (Jn has no relation to Jn,k,l). The tuple size, as
with Johnson’s definition, is always 3 and the morphological constraint remains that from vertex
to vertex, one integer remains the same and the other two change by 1 in opposite directions. It is
important to remark that, musically, the order of the elements in the tuple does not matter as they
represent pitches (for example, (23, 24, 25) is musically equivalent to (24, 25, 23)); however,
Johnson created the graph with tuples ordered from low to high and our mathematical definition
of Jn reflects and requires that the orderings are preserved.

We show that (Theorem 5.16) for all n ≥ 6, the graph Jn contains a Hamiltonian path but not
a cycle. We recognize that this is a weaker result than finding a Hamiltonian cycle as we do with
all the other graphs we have defined thus far. Therefore we also define the graph Pn where the
tuple can be in any order. The definition of Pn is equally true to Johnson’s musical idea, but we
introduced Jn first to explain why Johnson found a Hamiltonian path rather than a Hamiltonian
cycle. In Theorem 5.18, we show Pn contains a Hamiltonian cycle for all n ≥ 8.

Mathematical Definition of Jn. For any n ≥ 6, the graph Jn has the vertex set Vn = {(x, y, z) |
x, y, z ∈ N, x < y < z, x + y + z = n} where N denotes the set of positive integers. Two vertices
(x1, x2, x3), (y1, y2, y3) ∈ Vn are connected if and only if xi = yi for some i ∈ {1, 2, 3} and xj =
yj + 1 for some j ∈ {1, 2, 3}\{i}. Note that then xk = yk − 1 for k ∈ {1, 2, 3}\{i, j}.

Mathematical Definition of Pn. For any n ≥ 6, the graph Pn has the vertex set Vn = {(x, y, z) |
x, y, z are distinct positive integers, and, x + y + z = n}. The edges are defined as in the case of
Jn, that is two vertices (x1, x2, x3), (y1, y2, y3) ∈ Vn are adjacent if and only if xi = yi for some
i ∈ {1, 2, 3} and xj = yj + 1 for some j ∈ {1, 2, 3}\{i}.

The set of vertices of Pn can be identified with the ‘triangular subset’ τn of the integer lattice
Z

2 defined as follows:

τn = {(x, y) | x, y ∈ N, x, y, n − (x + y)are distinct and x + y ≤ n − 1}.
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Figure 11. Trio graph (from cover of score).
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12 A. Akhmedov and M. Winter

Figure 12. First system of Trio graph.

Figure 13. Graph of an icosahedron with a Hamiltonian cycle.

The set of edges is defined as follows: a vertex (x, y) ∈ τn is connected to the vertices (x, y +
1), (x, y − 1), (x − 1, y), (x + 1, y), (x + 1, y − 1), (x − 1, y + 1) provided that, in each case, the
latter is in τn.

We will denote �n = {(x, y) | x, y ∈ N, x + y ≤ n − 1}.
The vertices (1, 2) and (1, 3) are connected by an edge in the graph Pn for all n ≥ 8; the edge

((1, 2), (1, 3)) will be called the special edge of Pn.

4. Mathematical preliminaries needed for the main theorems

For very basic notions of graph theory, we refer the reader to Cameron (1995). All the graphs in
this paper will be finite and simple (in a simple graph, loops and multiple edges are not allowed).

Definition 4.1 If G = (V , E) is a graph, then any subset A ⊂ V defines a subgraph denoted by
G(A) = (A, E(A)) where E(A) = {(u, v) | u, v ∈ A, (u, v) ∈ E}. The graph G(A) is called the full
subgraph of G with respect to A (or the full subgraph of G on A).

Given any positive integer n, a complete graph on n vertices denoted by Kn is defined as a
simple graph where every pair of distinct vertices is connected by an edge, and a cyclic graph
on n vertices denoted by Cn is defined as a connected graph where the degree of every vertex is
two (such a graph is unique up to isomorphism).
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Journal of Mathematics and Music 13

Definition 4.2 A graph G = (V , E) is Hamiltonian if it has a cycle of length equal to |V |; such a
cycle is called a Hamiltonian cycle (for example, see Figure 13). Similarly, a graph is traceable
if it has a path of length |V |; such a path is called a Hamiltonian path.

Both Kn and Cn are obvious examples of Hamiltonian graphs. Let us emphasize that having
a Hamiltonian path is weaker than being Hamiltonian, i.e. being Hamiltonian requires having a
path visiting each vertex exactly once but also returning back to the original vertex. There are
many examples of even regular graphs (such as the Petersen Graph, see Cameron 1995, and
Figure 7) which contain a Hamiltonian path but are not Hamiltonian. The study of Hamiltonian
graphs is one of the central problems in graph theory. No complete description of such graphs
is available. There are some interesting sufficiency criteria for Hamiltonicity, the most classical
one being Dirac’s Theorem, which states that if G = (V , E) is a graph where the degree of every
vertex is at least |V |/2 then G is Hamiltonian (again, see Cameron 1995). But very often all the
known criteria are too weak to apply in concrete examples. For example, one often deals with
graphs where the degrees of vertices are uniformly bounded by some number r that is extremely
small by comparison to the number n of vertices in the graph.

Definition 4.3 Let G1 = (V1, E1), G2 = (V2, E2) be two graphs. The tensor product G = (V , E)

of these graphs is defined as follows: V = V1 × V2, E = {((x, y), (z, t)) | (x, z) ∈ E1, (y, t) ∈ E2}.
Example 4.4 (Tensor product) The tensor product of Tn,k1 and Tn,k2 is isomorphic to Tn,k1+k2 .

Definition 4.5 Let H denote the set of all Hamiltonian graphs G = (V , E) such that if |V | is
even then G contains a Hamiltonian cycle C = (v1, v2, . . . , v2n) such that there exists i, j, k, l ∈
{1, 2, . . . , 2n} with i, j even, k, l odd and (vi, vj), (vk , vl) ∈ E. In particular, if |V | is odd and G is
Hamiltonian, then G belongs to H .

Example 4.6 (Elements of H)

(1) The graph Cn - the n-cycle - is Hamiltonian for all n ∈ N but belongs to the class H if and
only if n is odd.

(2) The complete graph Kn belongs to the class H if and only if n ≥ 3.

The following proposition, proved in Gravier (1997), will be used heavily in the proof of
Theorem 5.5.

Proposition 4.7 The tensor product of two Hamiltonian graphs G1 and G2 is Hamiltonian if
and only if at least one of the factors belongs to H.

Definition 4.8 Let G1 = (V1, E1), G2 = (V2, E2) be two graphs. The Cartesian product G =
(V , E) of these graphs is defined as follows,

V = V1 × V2, E = {((x, y), (z, t)) | either x = z, (y, t) ∈ E2 or (x, z) ∈ E1, y = t}.
Example 4.9 (Cartesian product) The graph Tn,2,1 is isomorphic to the Cartesian product of two
complete graphs on n vertices.

It is a well known fact (and easy to prove) that the Cartesian product of Hamiltonian graphs is
Hamiltonian.

We also will need the following classical result in combinatorics.

Lemma 4.10 (Hall’s Marriage Lemma) Let A = (aij), 1 ≤ i, j ≤ n be an n × n matrix with all
entries either 0 or 1. Let also r ∈ {1, . . . , n}, 1 ≤ x1 < x2 < · · · < xr ≤ n where xi ∈ Z. Assume
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14 A. Akhmedov and M. Winter

that for every such choice of r and x1, . . . , xr the cardinality of the set {p | 1 ≤ p ≤ n, ∃j ∈
{1, . . . , r} such that apxj = 1} is at least r. Then one can choose n entries of the matrix A such
that all of the chosen entries are 1 and no two of them are in the same column or in the same row.

See Cameron (1995) for a proof of Lemma 4.10.
Hall’s Marriage Lemma can be reformulated as follows. Assume there are n men and n women

such that for each 1 ≤ r ≤ n, each set of r women like at least r men. Then one can match the
women to the men so that we have exactly n couples (marriages).

5. Main theorems

In this section, we will prove Hamiltonicity results for the graphs Tn,k,l, Cn,k,l, Jn, and Pn.

5.1. The Hamiltonicity of Tn,k,l for n ≥ 3 and k ≥ l + 1

Lemma 5.1 The graph Tn,2, n ≥ 3 belongs to the class H in Definition 4.5.

Proof The degree of every vertex of Tn,2 equals (n − 1)2 while the order of the graph equals
n2. Since (n − 1)2 ≥ (1/2)n2 for all n ≥ 4, by Dirac’s Theorem we conclude that Tn,2 for n ≥ 4
is Hamiltonian. On the other hand, the graph T3,2 is also Hamiltonian (see Figure 6). Then, if n
is odd then Tn,2 contains an odd number of vertices therefore it belongs to the class H .

Assume now n = 2k, k ≥ 2. For k = 2 the graph T4,2 is easily seen to belong to the class H .
Let us assume k ≥ 3. We can represent the vertices of T2k,2 by the points (i, j) for 1 ≤ i, j ≤ n and
i, j ∈ Z in the plane where the points (i, j), (i′, j′) are connected by an edge if and only if i �= j, i′ �=
j′. Let C1 = ((k + 1, k + 1), (k + 2, k + 2), . . . , (n, n)), C2 = ((1, 1), (2, 2), . . . , (k, k)), UDi =
((1, i), (2, i + 1), . . . , (n − i + 1, n)) be the ith diagonal above the main diagonal, and LDi =
((i, 1), (i + 1, 2), . . . , (n, n − i + 1)) be the ith diagonal below the main diagonal. Then we
observe that C1, C2, LD2, LD3, . . . , LDn−1, UDn, LDn, UD2, UD3, . . . , UDn−1 is a Hamiltonian
path in Tn,2. Moreover, the first vertex of C1 (the point (k + 1, k + 1)) and the last vertex of
UDn−1 (the point (2, n)) are connected, thus we have a Hamiltonian cycle. Furthermore, since the
vertices (1, 1), (2, 2), (3, 3), . . . , (n, n) are all mutually connected, we conclude that Tn,2 belongs
to H . �

Lemma 5.2 The graph Tn,2,1, n ≥ 3 belongs to class H in Definition 4.5.

Proof The graph Tn,2,1 is isomorphic to the Cartesian product of two Kn’s, therefore it is
Hamiltonian. On the other hand, Tn,2,1 contains n2 vertices therefore if n is odd, Tn,2,1 belongs
to H .

Assume now n = 2k, k ≥ 2. We can represent the vertices of T2k,2,1 by the points (i, j) for
1 ≤ i, j ≤ n and i, j ∈ Z in the plane where the points (i, j), (i′, j′) are connected by an edge if and
only if either i = i′, j �= j′ or i �= i′, j = j′.

Let Di = ((i, 1), (i, 2), . . . , (i, n)) denote ‘the path along the nth row’. Then it is easy to
see that D1D2 · · · Dn is a Hamiltonian cycle. Let D = (v1, . . . , vn2 , v1) denote this cycle. Then
v1 = (1, 1), v2n = (1, 2), v3n = (1, 3), v4n = (1, 4). Note that any two of these four vertices are
connected by an edge and thus we obtain that Tn,2,1 belongs to H . �

Proposition 5.3 The graph Tn,k is Hamiltonian for all n ≥ 3.
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Journal of Mathematics and Music 15

Proof We proceed by induction on k. For k = 1, Tn,1 is Hamiltonian for n ≥ 3 since it is iso-
morphic to Kn, the complete graph of order n; and Tn,2, n ≥ 3, is Hamiltonian by Lemma 5.1. Let
us assume that k > 2 and the graph Tn,m is Hamiltonian for all m < k.

Let us first assume that n is odd. Note that Tn,k is the tensor product of Tn,k−1 and Tn,1. More-
over, |V(Tn,m)| = nm. The graph Tn,k−1 is Hamiltonian by inductive hypothesis. Also, since its
order is odd, Tn,k−1 belongs to H . Then by Proposition 4.7, Tn,k is Hamiltonian.

When n is even, by Example 4.4, Tn,k is the tensor product of Tn,2 and Tn,k−2. By Lemma 5.1,
Tn,2 belongs to H , and by inductive hypothesis, Tn,k−2 is Hamiltonian. Then, by Proposition 4.7,
we conclude that Tn,k is Hamiltonian. �

Let us also observe that the graph Tn,l+1,l for n ≥ 3 is isomorphic to a Cartesian product of
Kn’s; thus we obtain the following lemma.

Lemma 5.4 The graph Tn,l+1,l is Hamiltonian for all n ≥ 3 and every non-negative integer l.

Theorem 5.5 The graph Tn,k,l is Hamiltonian for all n ≥ 3 and k ≥ l + 1. In particular, the
graph Tn,k is Hamiltonian for all n ≥ 3.

Proof The proof is by induction on k − l.
If k − l = 1 then the claim follows from Lemma 5.4. Now let k − l ≥ 2. By Proposition 5.3,

we may also assume that l ≥ 1.
Then we observe that the graph Tn,k,l contains a subgraph isomorphic to the tensor product

of the graphs Tn,k−2,l−1 and Tn,2,1 (because every k-tuple can be viewed as a pair consisting of
a (k − 2)-tuple and a 2-tuple). The graph Tn,k−2,l−1 is Hamiltonian by inductive assumption.
The graph Tn,2,1 is Hamiltonian and belongs to the class H as shown by Lemma 5.2. Then, by
Proposition 4.7, we conclude that Tn,k,l is Hamiltonian. �

Remark 5.6 Note that in the case l = k and n > 1, the graph Tn,k,l has no edges, so is discon-
nected and not Hamiltonian. Also, the graph T1,k,l, k ≥ 1 consists of a single vertex with no edge.
The graph T2,k,0, however, is not Hamiltonian for k ≥ 2 since it contains 2k ≥ 4 vertices and
every vertex in this graph is connected to exactly one other vertex since each k-tuple consisting
of 1’s and 2’s is connected to the k-tuple where ‘1’ is replaced by ‘2’ and ‘2’ is replaced by ‘1’.
The case T2,k,l for general k and l, k > l, is more complex.

5.2. There is a choice of representatives π such that Cn,k,l(π) is Hamiltonian

For a Cn,k,l-graph, again, the case l = 0 is special. First, we need the following lemma.

Lemma 5.7 Let n ≥ max{4, k}, and α, β, γ ∈ An,k be ordered k-tuples. Then there exists an
ordered k-tuple δ ∈ An,k such that δ is a permutation of γ , and δ is also a total derangement
of α and of β.

Proof Let α = (a1, . . . , ak), β = (b1, . . . , bk), γ = (c1, . . . , ck), and δ = (z1, . . . , zk). The con-
dition in the lemma is equivalent to the following: δ is a permutation of γ and zi /∈ {ai, bi} for all
i ∈ {1, . . . , k}. So for each value zi, only two values, namely, ai and bi, are not acceptable and all
the other n − 2 values can be chosen. But since n − 2 ≥ 2, by Hall’s Marriage Lemma, we can
arrange it. �
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16 A. Akhmedov and M. Winter

Remark 5.8 The condition n ≥ 4 is sharp. Indeed, for n = 3, k = 2, if α = (1, 2), β =
(1, 3), γ = (2, 3), then there is no δ satisfying the conditions of the lemma.

Corollary 5.9 Let n ≥ max{4, k}, and let α, γ ∈ An,k be ordered k-tuples. Then there exists a
k-tuple δ ∈ An,k such that δ is a permutation of γ , and δ is also a total derangement of α.

Proposition 5.10 Let n, k be positive integers with n ≥ max{3, k + 1}.
(1) For some choice π of representatives, the graph Cn,k(π) is Hamiltonian.
(2) Let n ≥ 4, α, β be two distinct k-subsets of An, and let the ordered k-tuples

(a1, . . . , ak), (b1, . . . , bk) be permutations of α and β respectively. Then there exists a choice
of representatives π and a Hamiltonian path in Cn,k(π) starting at α, ending at β, and such
that π(α) = (a1, . . . , ak), π(β) = (b1, . . . , bk).

Proof

(1) Let n ≥ 4 and α1, α2, . . . , αN be all k-subsets of An (so N = (n
k

)
). Let also π(α1) be any per-

mutation of α1. By Corollary 5.9, we can choose a permutation π(α2) of α2 which is a total
derangement of π(α1) and by induction, at each step i, we can define a permutation π(αi)

of αi to be a total derangement of π(αi−1). For the last step, by Lemma 5.7, we can define
a permutation π(αN ) of the last remaining k-subset αN such that it is a total derangement of
π(αN−1) and π(α1).

For the case n < 4, we need to consider the graphs C3,1, C3,2. The graph C3,1 is cyclic and
therefore Hamiltonian. For the graph C3,2, it is easy to find a choice of representative π and
a Hamiltonian cycle, e.g. (1, 2) → (2, 3) → (3, 1) → (1, 2).

(2) The claim follows immediately from the proof of part (1).

�

Now we need to treat the case l ≥ 1. First, we will consider a special case.

Proposition 5.11 For all integers k, n with k ∈ {2, 3} and n ≥ 4, there exists a choice of
representatives π such that the graph Cn,k,1(π) is Hamiltonian.

Proof The proof is by induction on n. For n = 4, let us observe that C1 =
((1, 2, 3), (1, 3, 4), (2, 1, 4), (2, 4, 3), (1, 2, 3)) is a Hamiltonian cycle in a C4,3,1-graph, and C2 =
((1, 2), (1, 3), (2, 3), (2, 4), (3, 4), (1, 4), (1, 2)) is a Hamiltonian cycle in a C4,2,1-graph.

For the step of the induction, let us assume that the claim holds for some n ≥ 4. We will treat
the cases k = 2 and k = 3 separately.

Case 1: k = 2. Let C = ((1, 2), . . . , (a, b), (1, 2)) be a Hamiltonian cycle in a Cn,2,1-graph for
some choice of representatives (without loss of generality, we may assume that the first vertex in
a cycle is an ordered pair (1, 2)). Then either a �= 1 or b �= 2. Assume that a �= 1 (the case b �= 2 is
similar). Then we obtain a Hamiltonian cycle ((1, 2), . . . , (a, b), (a, n + 1), . . . (1, n + 1)) where
the path ((a, n + 1), . . . (1, n + 1)) visits every vertex of the form (i, n + 1), 1 ≤ i ≤ n.

Case 2: k = 3. Again, let C = ((a, b, c), . . . , (1, 2, n)) be a Hamiltonian path in a Cn,3,1-graph
for some choice of representatives. Let d ∈ An\{b}, and S be the set of all 3-subsets of An+1

which contain n + 1, i.e. S = An+1,3\An,3. We can make a choice of representatives on S to obtain
a choice of representatives π on the whole set An+1,3 such that in the full subgraph of Cn+1,3,1(π)

on the set S, there exists a Hamiltonian path C′ starting at an ordered triple (1, 3, n + 1), and
ending at an ordered triple (a, d, n + 1). Then the concatenation of the paths C and C′ form a
Hamiltonian cycle. �
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To treat the general case, we need some notations. Let n > k > l ≥ 0. We will denote the
set of all k-subsets of An = {1, 2, . . . , n} by Xn,k . For all α = {x1, . . . , xk} ∈ Xn,k , we will write
min(α) = min1≤i≤k xi.

We will also write Yn,k = {α ∈ Xn,k | α ⊆ [n − k, n]}.
Now, for any choice π of representatives of k-subsets of An, Xn,k(π) will denote the set of

all ordered k-tuples of {1, 2, . . . , n} which are ordered according to π , and Yn,k(π) is defined
similarly. Note that |Xn,k(π)| = (n

k

)
and |Yn,k(π)| = k + 1. Since Xn,k(π) is the set of vertices of

Cn,k,l(π) and Yn,k(π) ⊂ Xn,k(π), then we can consider the full subgraph of Cn,k,l(π) on the subset
Yn,k(π).

Let us notice that the set Yn,k contains k + 1 elements, namely, the k-subsets ω1, ω2, . . . , ωk+1

such that ωi = {n − k, . . . , n}\{n − k − 1 + i}, for all 1 ≤ i ≤ k + 1. We need the following easy
lemma.

Lemma 5.12 Let k ≥ 4, n > k ≥ 2l > 0, and let α1, α2 ∈ Xn,k\Yn,k such that α1 �= α2, α1 ⊂
[n − k − 1, n], {n − l + 1, . . . , n} ⊂ α2. Also, let π ′ be a choice of representatives on Xn,k\Yn,k

such that

π ′(α2) = (1, . . . , l, c1, . . . , ck−2l, n − l + 1, . . . , n).

Then there exists an extension π of π ′ to the whole set Xn,k such that, in the full subgraph of
Cn,k,l(π) on Yn,k 
 {α1, α2}, there exists a Hamiltonian path which starts at α1 and ends at α2.

Proof For k ∈ {4, 5, 6} the claim can be checked directly, and we leave it to the reader as an
exercise (notice that the essence of the claim depends on k and l only, and not on n, so there are
finitely many (a small number of) cases to check). Let k ≥ 7. Then k − l ≥ 4.

Let also A = {ωk , ωk+1}, B = {ωl+1, . . . , ωk−1}, C = {ω1, . . . , ωl}. We can define the represen-
tatives of ωk and ωk+1 (thus extending π ′ to the set (Xn,k\Yn,k) ∪ A; we still denote this extension
by π ′) such that the following conditions hold:

(i) π ′(α1) and π ′(ωk+1) agree at exactly l entries;
(ii) π ′(ωk+1) and π ′(ωk) agree at exactly l entries;

(iii) π ′(ωk) = (n − k, n − k + 1, . . . , n − k + l − 1, a1, . . . , ak−l) for some a1, . . . , ak−l ∈ {n −
k + l, . . . , n}.

Then, since k − l ≥ 4, by Lemma 5.7, we can define a choice of representatives on the set
B (thus extending π ′ to (Xn,k\Yn,k) ∪ A ∪ B) such that for all j ∈ {l + 1, . . . , k − 1}, the ordered
k-tuple π ′(ωj) is in the form (n − k, n − k + 1, . . . , n − k + l − 1, x1, . . . , xk−l), moreover, the
ordered k-tuples π ′(ωk), . . . , π ′(ωl) agree at the first l entries, and consecutive k-tuples in this
sequence differ at all other k − l entries.

Then we can define π ′ on the k-subset ωl such that

π ′(ωl) = (b1, . . . , bk−l, n − l + 1, . . . , n)

for some b1, . . . , bk−l ∈ {1, . . . , n − l}, and π ′(ωl+1), π ′(ωl) agree at exactly l entries.
Finally, again by Lemma 5.7, we can extend π ′ to (Xn,k\Yn,k) ∪ A ∪ B ∪ C (we will denote

this final extension by π ) such that for all j ∈ {1, . . . , l}, the ordered k-tuple π ′(ωj) is in the form
(y1, . . . , yk−l, n − l + 1, . . . , n), moreover, the ordered k-tuples π ′(ωl), . . . , π ′(ω1), α2 agree at
the last l entries, and any two consecutive k-tuples in this sequence differ at all other entries.

Thus we have obtained a Hamiltonian path in the full subgraph of Cn,k,l(π) on Yn,k ∪ {α1, α2}
connecting α1 to α2. �

Remark 5.13 Notice that, when n = k + 1, we have Xn,k = Yn,k . Then from the proof we also
obtain the claim of Theorem 5.14 for the case of n = k + 1.
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18 A. Akhmedov and M. Winter

Now we are ready to prove the main theorem of this section.

Theorem 5.14 For all non-negative integers n, k, and l, with n ≥ max{4, k + 1} and k ≥
max{2l, 1}, there is a choice of representatives π such that Cn,k,l(π) is Hamiltonian.

Proof By Proposition 5.10 and Proposition 5.11, we may assume that k ≥ 4 and l ≥ 1.
Let Zn,k,l = {{i1, . . . , il} | 1 ≤ i1 < i2 < · · · < il ≤ n − k + l}, i.e. Zn,k,l is the set of all

l-subsets of the set {1, 2, . . . , n − k + l} where we list the elements in increasing order. Note
that Zn,k,l has exactly r = (n−k+l

l

)
elements.

Let α1, α2, . . . , αr be the sequence of all elements of Zn,k,l such that the following conditions
are satisfied:

(i) α1 = {1, 2, . . . , l},
(ii) αr = {n − k + 1, n − k + 2, . . . , n − k + l},

(iii) if 1 ≤ i < j ≤ r, then min(αi) ≤ min(αj),
(iv) for all m ∈ {1, 2, . . . , r − 1}, |αm+1\αm| = 1,

For every α = {i1, . . . , il} ∈ Zn,k,l we define a set

Vα = {{i1, . . . , il, j1, . . . , jk−l} | il < j1 < · · · < jk−l ≤ n}.
For any choice of representatives π which fixes i1, . . . , il, the set Vα can also be viewed as a

subset of vertices of Cn,k,l(π) so we will denote the full subgraph of Cn,k,l(π) on Vα by Vα(π).
Notice also that for any such π , the full subgraph of Cn,k,l(π) on Vα is isomorphic to Cn−il ,k−l(π).
Hence, by Proposition 5.10, (1), Vα(π) is Hamiltonian for any π which fixes i1, . . . , il.

We consider the sequence Vα1 , Vα2 , . . . , Vαr of mutually disjoint subsets. Notice that, for any
choice of π , the subsets Vα1 , Vα2 , . . . , Vαr form a partition of the set of vertices of Cn,k,l(π).

Let r′ = min{j ∈ {1, 2, . . . , r} | αj ∈ Yn,k}. Notice that by condition (iii) we have αr′−1 ⊂ [n −
k − 1, n]. The idea of the proof is to use Proposition 5.10 and Lemma 5.12 to find choices of
representatives on the subsets Vα1 , Vα2 , . . . , Vαr′ and 
j≥r′Vαj such that the full subgraph on each
of these subsets is Hamiltonian. Of course, we still need to match the ends of these paths to obtain
a global Hamiltonian cycle on the whole graph.

We will treat Vα1 specially. Let γ = (1, 2, . . . , l, n − l + 1, n − l + 2, . . . , n, c1, . . . , ck−2l), δ =
(1, 2, . . . , k) (so γ is an ordered k-tuple formed by 2l elements 1, 2, . . . , l, n − l + 1, n − l +
2, . . . , n and some remaining elements c1, . . . , ck−2l; notice that for the existence of such γ we
need the condition k ≥ 2l). Let also

[γ ] = {1, 2, . . . , l, n − l + 1, n − l + 2, . . . , n, c1, . . . , ck−2l}, [δ] = {1, 2, . . . , k}
Note that [γ ], [δ] ∈ Vα1 . By Proposition 5.10, there exists a choice of representatives π1 on

Vα1 , and a Hamiltonian path in Vα1(π1) which starts at [γ ] and ends at [δ], moreover, we can
make π1 agree with the ordering of γ and δ, i.e. π1([γ ]) = γ and π1([δ]) = δ. Let R1 be such a
path.

We will define the paths R2, R3, . . . inductively. For all 2 ≤ i ≤ r′ − 1, by Proposition 5.10,
(2) and conditions (iii)–(iv), there exists a Hamiltonian path Ri in Vαi(πi) for some choice of
representatives πi on Vαi such that the beginning of the path Ri is connected to the end of the
Hamiltonian path Ri−1 in Vαi−1(πi−1).

Let z be the end of the Hamiltonian path in Vαr′−1
(πr′−1). We have αj ∈ Yn,k for all r′ ≤ j ≤ r.

Let us also emphasize that we have already defined the choice of representatives on all Vαi , 1 ≤
i ≤ r′ − 1, so it remains to define it on 
j≥r′Vαj .

By Lemma 5.12, there exists a choice of representatives πr′ on 
j≥r′Vαj such that the full
subgraph on 
j≥r′Vαj(πr′) contains a Hamiltonian path Q starting at z1 and ending at z2 such that
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z1 is connected to πr′−1(z) and z2 is connected to γ . Then R1R2R3 · · · Rr′−1Q is a Hamiltonian
cycle in Cn,k,l(π) where the π is the unique extension of the choices of representatives πi, 1 ≤
i ≤ r′. �

Remark 5.15 When l = k, a Cn,k,l-graph is always disconnected unless n = 1 in which case the
graph is trivial. When n = k, a Cn,k,l-graph is always trivial.

5.3. The graph Jn contains a Hamiltonian path for all n ≥ 6

Theorem 5.16 The graph Jn contains a Hamiltonian path for all n ≥ 6.

Proof It is easy to verify the claim for n ≤ 14 by direct checking (in the hardest case n = 14
we have the following Hamiltonian path in the graph J14: (1, 6, 7), (1, 5, 8), (2, 5, 7), (3, 5, 6),
(3, 4, 7), (2, 4, 8), (2, 3, 9), (1, 4, 9), (1, 3, 10), (1, 2, 11)), so we will assume that n ≥ 15.

For all 1 ≤ i ≤ [n/3] − 1, we define s(i, n) = [(n − i − 1)/2] − i, and for all i + 1 ≤ j ≤
s(i, n) we define a(i,n)

j = (i, j, n − i − j).

For all 1 ≤ i ≤ [n/3] − 1, let also Li(n) = (a(i,n)
i+1 , . . . , a(i,n)

j , . . . , a(i,n)

s(i,n)) and Ri(n) = (a(i,n)
i+2 , . . . ,

a(i,n)
j , . . . , a(i,n)

s(i,n)). (Notice that Li(n) = ((i, i + 1, n − 2i − 1), (i, i + 2, n − 2i − 2), . . . , (i, j, n −
i − j), . . . , (i, [(n − i − 1)/2], n − i − [(n − i − 1)/2])), moreover, Li(n) and Ri(n) are paths in
the graph Jn). Notice that the path Li(n) contains all vertices of Jn of the form (i, x, y), i < x < y,
and the path Ri(n) is obtained from Li(n) by deleting the first vertex of it.

Also, for all 1 ≤ i ≤ [n/3] − 2, we define Si(n) = (a(i,n)

s(i,n), . . . , a(i,n)
i+3 , a(i+1,n)

i+1 , a(i,n)
i+2 , a(i,n)

i+1 ). Let us
make a very useful observation that Si(n) is a path in Jn. Since n ≥ 15, we have [n/3] − 1 ≥ 4
so there are at least 4 paths Li(n) in the graph Jn. (See Figure 14)

The paths Li(n), 1 ≤ i ≤ [n/3] − 1 are mutually disjoint, and every vertex of the graph Jn

belongs to precisely one of these paths. Moreover, if 1 ≤ i ≤ [n/3] − 2 then the last vertex of
Li(n) is connected to the last vertex of Li+1(n) by an edge. Then, for all 1 ≤ i ≤ [n/3] − 2, Ri+1Si

is a path in Jn. Let us also observe that if Ri+1 contains at least three elements, then the path Ri+1Si

covers exactly the set of vertices covered by the path Li+1L−1
i . Furthermore, the first vertex of

every Li(n) (for i ≥ 2) is connected to the second and third vertices (if they exist) of Li−1(n).
Then Si+1Ri is a path in Jn.

The idea of the proof is to build a Hamiltonian path by following roughly the paths
L1(n), L2(n), . . . , Ls(i,n)(n). The problem is that while the last vertex of Li(n) is connected to
the last vertex of Li+1(n) by an edge, the first vertex of Li(n) is not connected to the first vertex
of Li+1(n); hence L1(n)L2(n)−1L3(n)L4(n)−1 · · · is not necessarily a path in Jn. Using the obser-
vations in the previous paragraph (i.e. using the paths Ri+1Si and Si+1Ri), we will slightly tweak
these paths L1(n), . . . , Ls(i,n)(n) to obtain a Hamiltonian path. One of the issues in implementing
this plan is the fact that the paths Ri and Si could be degenerate, i.e. they may have less than three
elements for certain values of i close to n/3.

Let n = 6k + r, 0 ≤ r ≤ 5. We will divide the proof into 4 cases. In each case, we will present a
Hamiltonian path in Jn, and in each case, the Hamiltonian path will end at the vertex (1, 2, n − 3).

Case 1: r = 0.
Let L′(n) = ((2k − 1, 2k, 2k + 1), (2k − 2, 2k, 2k + 2)). Then L′(n)S2k−3R2k−4 · · · S3R2S1 is a

Hamiltonian path in Jn.
Case 2: r = 1.
Then L2k−1R2k−2S2k−3R2k−4S2k−5 · · · R2S1 is a Hamiltonian path.
Case 3: r = 2.
Then L−1

2k−1R2k−2S2k−3R2k−4S2k−5 · · · R2S1 is a Hamiltonian path. (Notice that in this case the
path L2k−1 contains two vertices).

D
ow

nl
oa

de
d 

by
 [

M
ic

ha
el

 W
in

te
r]

 a
t 0

7:
32

 1
1 

A
pr

il 
20

14
 



20 A. Akhmedov and M. Winter

Figure 14. The 1st vertex of every Li(n) (for i ≥ 2) is connected to the 2nd and 3rd vertices (if they exist) of Li−1(n)

(note that not all edges of J15 are drawn in the picture).

Case 4: 3 ≤ r ≤ 5.
In these cases, the path L2kL−1

2k−1R2k−2S2k−3R2k−4S2k−5 · · · R2S1 is Hamiltonian. (Notice that,
when r = 5, the path L2k consists of two vertices). �

Remark 5.17 The graphs J6 and J7 are trivial, i.e. each has only one vertex and no edges. But
for n ≥ 8, Jn has at least two vertices and contains a vertex which is connected to only one other
vertex therefore it is not Hamiltonian. Indeed, the vertex (1, 2, n − 3) is adjacent only to the
vertex (1, 3, n − 4).

5.4. The Hamiltonicity of Pn for n ≥ 8

Theorem 5.18 The graph Pn is Hamiltonian for all n ≥ 8.

The proof is by induction on n. For the base of the induction, we observe that the graphs
P8, P9, P10, P11, P12, P13 are Hamiltonian with a Hamiltonian cycle containing the special edge
((1, 2), (1, 3)). (See Figure 15 for the Hamiltonian cycles in the graphs P8, P9, P10, P11 containing
the special edge; we leave it to the reader as an exercise to find such cycles also in P12 and P13).

Then, for the step of the induction, it suffices to prove the following.

Proposition 5.19 If Pn is Hamiltonian for n ≥ 8 with a Hamiltonian cycle including the
special edge, then so is Pn+6.

Proof For n ≥ 8, let αn = (x1, . . . , xN ) be a Hamiltonian cycle of Pn which includes the special
edge, i.e. let (xN , x1) be the special edge of Pn.
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Figure 15. Hamiltonian cycles of P8, P9, P10, and P11 (empty nodes are points on the plane that do not belong to the
graph).

Let Dn = {(x, y) ∈ τn+6 | x ≥ 3, y ≥ 3, ((n + 6) − (x + y)) ≥ 3}. We observe that

(x, y) ∈ Dn ⇔ (x − 2, y − 2) ∈ τn.

Moreover, for the vertices (x1, y1), (x2, y2) in Dn, ((x1, y1), (x2, y2)) ∈ E(Pn+6) ⇔ ((x1 −
2, y1 − 2), (x2 − 2, y2 − 2)) ∈ E(Pn) where E(Pk) denotes the set of edges of Pk .

Thus the full subgraph of Pn+6 on Dn is isomorphic to Pn where the isomorphism is given by
mapping the vertex (x, y, z) to (x − 2, y − 2, z − 2).

Now, let An = {(x, y) ∈ τn+6 | 1 ≤ x ≤ 2, y > x}, Bn = {(x, y) ∈ τn+6 | 1 ≤ y ≤ 2, y < x},
Cn = {(x, y) ∈ τn+6 | 1 ≤ n − (x + y) ≤ 2}. Notice that An, Bn, Cn are subsets of the set of
vertices of Pn+6; moreover, An ∩ Bn = ∅, An ∩ Cn = {(2, n − 3)}, Bn ∩ Cn = {(n − 3, 2)}, (An ∪
Bn ∪ Cn) ∩ Dn = ∅. Also, if n is even (the case of odd n is similar) by letting n = 2m we observe
that

{(x, y) ∈ �n+6 | 1 ≤ x ≤ 2}\An = {(1, 1), (2, 2), (2, m − 1), (2, n − 4), (1, n − 2)},
{(x, y) ∈ �n+6 | 1 ≤ y ≤ 2}\Bn = {(1, 1), (2, 2), (m − 1, 2), (n − 4, 2), (n − 2, 1)},
{(x, y) ∈ �n+6 | 1 ≤ n − (x + y) ≤ 2}\Cn

= {(1, n − 1), (n − 1, 1), (2, n − 4), (n − 4, 2), (m − 1, m − 1)}.

After these observations, it is easy to see that, for n ≥ 8, the full subgraph of Pn+6 on An

has a Hamiltonian path β1 which starts at (2, n − 3), ends at (1, 2), and passes through the
edge ((2, 5), (2, 4)). Let β2 be the reflection of β1 with respect to the line y = x. Then β2 is a
Hamiltonian path of the full subgraph of Pn+6 on Bn which starts at (n − 3, 2) and ends at (2, 1).

It is also easy to see that the full subgraph of Pn+6 on Cn has a Hamiltonian path which
starts at (n − 3, 2) and ends at (2, n − 3). Let us denote this path by β3. Then β = β3β1β

−1
2 is a

Hamiltonian cycle of the full subgraph of Pn+6 on An ∪ Bn ∪ Cn.
Let β ′ be the cyclic shift of the cycle β which starts at (2, 5). Let also α′ be the Hamiltonian

cycle of the full subgraph of Pn+6 on Dn which is the isomorphic image of αn. Then ((2, 5), (2, 4))

is an edge of β ′, and ((3, 5), (3, 4)) is an edge of α′; notice that the edge ((3, 5), (3, 4)) is the iso-
morphic image of the special edge ((1, 3), (1, 2)). Since ((2, 5), (3, 5)), ((2, 4), (3, 4)) are edges
of Pn+6 we immediately obtain a Hamiltonian cycle in Pn+6. �

Remark 5.20 The graph P6 is isomorphic to the cycle C6 therefore it is also Hamiltonian.
However, the graph P7 is not Hamiltonian, in fact, it is disconnected.
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22 A. Akhmedov and M. Winter

Remark 5.21 The proof of Proposition 5.19 can be summarized as follows: we obtain a partition
(An ∪ Bn ∪ Cn) 
 Dn of the set of vertices of Pn+8. The union An ∪ Bn ∪ Cn also is almost a
partition in the sense that An ∩ Bn = ∅, while the intersections An ∩ Cn and Bn ∩ Cn consist of
a single point. The sets An and Bn are symmetric with respect to the y = x line, while the full
subgraph on the set Dn is isomorphic to the graph Pn. It is easy to find Hamiltonian paths in the
full subgraphs on An, Bn, Cn such that, together, these paths form a cycle β. On the other hand,
by the hypothesis, there exists a Hamiltonian cycle α′ in the full subgraph on Dn. Furthermore,
we observe that the cycle β contains consecutive vertices u1 = (2, 5), u2 = (3, 5) and the cycle
α′ contains consecutive vertices v1 = (2, 4), v2 = (3, 4) such that (u1, v1) and (u2, v2) are edges
in the graph Pn+6. Thus we obtain a global Hamiltonian cycle.

6. Conclusion

We have explored the Hamiltonicity for Tn,k,l, Cn,k,l, Jn, and Pn. Still, there are questions that
warrant further research such as whether our approach to Cn,k,l may indeed impact the problem
of Hamiltonicity of Johnson Graphs.

As mentioned at the start, our primary focus in this research was simply to show the circum-
stances in which Hamiltonicity holds in the abstract cases of our examples. In many cases, it is
not trivial to actually find an instance of the path. It is known that determining the Hamiltonicity
of arbitrary graphs is an NP-complete problem. We leave open the potential connection between
the mathematical proofs and the applied examples as well as whether or not there exists optimal
algorithms for particular cases (specifically where full pieces were generated such as Johnson’s
Trio and the second author’s maximum change). For example, the final morphology for Johnson’s
Trio was painstakingly determined by hand. When beginning to write the piece, Johnson may not
have even known whether or not such a construction was possible. Due to this, exactly how his
solution relates to ours is not completely explored.

For the case of maximum change, the rather simple solution used to create the piece was found
independent of the proof. The solution generates a list for each of the 4 pitches that determines
which instrument it is assigned over time by an algorithm that works as follows. For each pitch,
generate a permutation of (1,2,3,4). For the first pitch, simply repeat that (ordered) set 64 times.
For the second pitch, iterate the set 64 times, rotating it left by one position every iteration.
For the third pitch, iterate the set 64 times, rotating it left by one position every 4 iterations.
And finally, for the last pitch, iterate the set 64 times, rotating it left by one position every 16
iterations. Something similar to this solution should likely work for any Tn,n and like the previous
example, we have not fully explored the relationship between the proof and the algorithm used
to generate the piece.

Finally, it could be that multiple paths satisfying our definitions are quite different phenomeno-
logically. Despite the fact that most of our examples can be related to ideas of neo-Riemannian
analysis, we have not investigated whether our abstractions (not at all based on tonal harmony)
can be applied to earlier literature beyond the examples that instigated our research. There are
works between the late romantic era and our examples that explore new ideas of voice leading
particularly with respect to spectral morphing/modulation/interpolation. A notable example is
Gérald Grisey’s Modulations (1976–77) for orchestra where the formal framework of the piece
is based largely on modulations from harmonic spectra to subharmonic spectra (see Rose 1996).
Another set of apt examples is Larry Polansky’s Psaltery (1979), Horn (1989; rev. 1992), and
FreeHorn (2004). In these pieces, Polansky interpolates/morphs between several sets of har-
monic series by defining an algorithm that successively replaces harmonics in the source series
by harmonics in the target series (see Figure 16). While these examples relate more generally
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Figure 16. Harmonic trajectory of Polansky’s Psaltery that shows how harmonics are replaced from each harmonic
series to the next.

to new techniques of voice leading and not necessarily directly to our constructions, because
they are well-defined (at least the Polansky examples are), they could be subjected to deeper
mathematical investigations.

Regardless, Jn and Pn can clearly be seen as an extension of the parsimonious voice leading,
and Cohn’s notion of maximally smooth cycles to music that is not necessarily tonal or at least
employs a more extended tonality where the whole gamut of chords with 3 pitches is used as
opposed to just chords comprised of certain intervals such as thirds and perfect fifths. Related
group-theoretic work is Fiore and Satyendra (2005) and Hook (2002), and related topological
work is Catanzaro (2011). We also have not further abstracted this idea to chords with more than
3 pitches. An interesting, open problem is the Hamiltonicity of an extended version of Jn and Pn

where the chord could be comprised of more than 3 pitches and some number of them stay the
same while the others satisfy some sort of parsimonious voice leading constraint.

Ultimately, we feel that investigating the character of the Hamiltonian cycles of the graphs, we
define (and their possible extensions) with respect to other factors such as harmonic trajectory
and algorithmic complexity may reveal paths that have different local and global properties of
interest to musicians and mathematicians alike.
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