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Michael B. Winter Curriculum Vitae 
1026 South Santa Fe Avenue #203 mwinter@unboundedpress.org 
Los Angeles, CA 90021    www.unboundedpress.org 
(current as of May 4th, 2010)        (213) 446-4776 

Education    

University of California at Santa Barbara, Santa Barbara, CA 
Ph.D. Candidate in Media Arts and Technology (May 2010)    2007 – 2010 
ABD (April 2008); Dissertation – Structural Metrics: An Epistemology 
California Institute of the Arts, Valencia, CA 
M.F.A. in Music Composition (May 2005)          2003 – 2005 
University of Oregon, Eugene, OR 
B.S. with Music Technologies Emphasis (June 2003)   2000 – 2003 
Belmont University, Nashville, TN 
B.M. Candidate in Commercial Music with Jazz Guitar Emphasis     1999 – 2000 

Teaching Experience 

As Instructor or Assistant: 
University of California at Santa Barbara, Santa Barbara, CA 
Tranvergence – Teaching Assistant     Winter Term 2008 

Assisted students in digital architecture, composition, and sound 
design implemented in Max/MSP/Jitter and other languages; held 
discussions/workshops on the philosophy of art and composition; 
assembled and maintained state of the art media laboratory, wrote 
networking software for motion capture/sound/video system 

Digital Audio Signal Processing – Teaching Assistant  Fall Term 2007 
Assisted students in digital audio signal processing, GUI design, and 
networking implemented in C/C++, and Java 

University of Virginia, Charlottesville, VA 
Technosonics – Teaching Assistant     Spring Term 2007 

Taught basic music software such as Garage Band, sound design and 
synthesis implemented in Max/MSP, composition, and history of 
electronic music; evaluated student performance 

Introduction to Music and Computers – Teaching Assistant  Fall Term 2006 
Taught advanced music software such as Digital Performer, sound 
design and synthesis in Max/MSP, composition, and history of 
electronic music; evaluated student performance 

California Institute of the Arts, Valencia, CA 
Introduction to Electronic Media – Instructor      Spring Term 2004 
Introduction to Electronic Media – Teaching Assistant        2003 – 2005 

Developed syllabus and course structure; taught advanced music 
software and programming languages for sound design and synthesis 
such as Max/MSP, composition, and electronic music history; 
managed media laboratory; evaluated student performance 

As Guest Lecturer: 
California Institute of the Arts, Valencia, CA 
“Structural Metrics” – Guest Lecture      April 2009 

On the epistemology of structural metrics 
Columbia University, New York, NY 
“On James Tenney’s Arbor Vitae for String Quartet” – Guest Lecture  February 2008 

As part of the “Tenney/Babbit Festival and Conference” 
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Teaching Experience (continued) 

State University of New York, Buffalo, NY 
“Lecture on the Machine and Music” – Guest Lecture   December 2006 

On music, mathematics, and technology  
State University of New York, Binghamton, NY 
“Lecture on Infinity” – Guest Lecture         September 2005 

On music with infinite realizations 

Teachers, Mentors, and Influences 

Clarence Barlow, Doug Barrett, Madison Brookshire, Michael Byron, Eric Clark, Nick Didkovsky, Tom 
Johnson, Joe Kudirka, Cat Lamb, György Ligeti, Alvin Lucier, James Orsher, Adam Overton, Michael 
Pisaro, Larry Polansky, Curtis Roads, Chiyoko Slavnics, Mark So, Jeffrey Stolet, James Tenney, Tashi 
Wada, Christian Wolff and Harris Wulfson – (this is not an all inclusive list) 

Curatorial Experience  

the wulf., Los Angeles, CA 
Co-founder and Co-director       August 2008 – Present 

Duties include managing all aspects of the 501(c)(3) non-profit  
arts organization including curating regular public events in 
experimental arts – www.thewulf.org 

Industry Experience  

Music Mastermind, Calabasas, CA 
Java Media Programmer and Consultant    July 2008 – August 2010 

Hibernate, Swing, MySQL, and Hidden Markov Models, JNI 
(MidiShare and JSyn), algorithmic music applications 

Practical Expertise and Other Experience  

Recording/Digital Audio Studio Use and Maintenance* 
Advanced competence in studio design and maintenance; recording, engineering, editing, mixing, 
and mastering; sound design and synthesis  

Java Programming Language* 
Advanced competence in sound design, synthesis, signal processing, and algorithmic composition 
(JMSL, JScore, JSyn); creating graphics environments (Java2D); GUI development (Swing); basic 
competence in networking 

C/C++ Programming Language 
Basic competence in sound design, synthesis, signal processing, and GUI development 

Lisp Programming Language 
Basic competence in sound design, synthesis, signal processing 

Max/MSP/Jitter Music and Video Programming Environment* 
Advanced competence in sound design, synthesis, signal processing, and algorithmic composition; 
basic competence in digital video processing 

Digital Audio Workstations – Pro-Tools and Digital Performer* 
Advanced competence in recording, editing, mixing, and mastering 

Music Notation Software – Finale* 
Advanced competence in copying and engraving traditional and unconventional music scores 

Referee           
Peer reviewer for the Computer Music Journal 
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Practical Expertise and Experience (continued) 

Freelance Copy Editor  
Copied, edited, and engraved scores for composers including James Tenney, Larry 
Polansky, and Anne LeBaron; proofreader for the Directory of Recorded American Music 
at New World Records 

Software Programmer  
Designed transcription and algorithmic composition software in Java and Max/MSP for 
composers including James Tenney and Anne LeBaron 

     Guitar Instructor 
     Other Skills 

Mathematica, Adobe and Macromedia Suites; Microsoft Office programs; web design and 
html 

* Indicates expertise and teaching experience in this field 

Selected Writings, Publications, and Presentations (including preprints)  

• “LiveScore: Real-Time Notation in the Music of Harris Wulfson” (co-authored with G. D. Barrett) – 
forthcoming in the Contemporary Music Review 

• “A Few More Words About James Tenney: Dissonant Counterpoint and Statistical Feedback” (co-
author with L. Polansky and A. Barnett) – Submitted to the Journal of Mathematics and Music 

• CD Review of James Tenney Selected Works 1961–1969 – forthcoming in the Journal of the Society 
for American Music 

• “Chordal and Timbral Morphologies Using Hamiltonian Cycles” (co-author with A. Akhmedov, 
Professor of Mathematics, University of California at Santa Barbara) – Preprint 

• James Tenney Entry in Grove Encyclopedia (co-authored with S. Hanson, L. Polansky, and C. Streb) 
• “On James Tenney’s Arbor Vitae for String Quartet” – Contemporary Music Review, vol. 27, issue 1, 

2008, London, England – Presented at Columbia University as part of the Tenney/Babbit 
Conference and Festival 

• “Mavericks on Mavericks: James Tenney’s Last Courses at CalArts” – MusikTexte, vol. 112, 2007, 
Berlin, Germany 

• “Algorithmic Notation Generators” (co-authored with H. Wulfson and G. D. Barrett) – Presented at 
the 2007 New Interfaces for Musical Expression (NIME) Conference, New York, NY and presented 
at the 2007 International Computer Music Conference (ICMC), Copenhagen, Denmark 

• “Lecture on the Machine and Music” – Presented in Dec. 2006 at the State University of New York, 
Buffalo 

• “Lecture on Infinity” – Presented in Sept. 2005 at the State University of New York, Buffalo 
• Filter IV P.I.X.L. Study No. 1 – Sound recording of chamber piece with electronics, 

DIY Canons, CD, Pogus Records – 2005 
• The Other Self – Electronic music piece premiered at the 2003 Society for Electroacoustic Music in 

the United States (SEAMUS) Convention, Tempe, AZ 
• Density Study No. 3 for 3 alto saxophones – 2002, Ruginenti Editore, Milan, Italy 
• Scores of music compositions available on the web at www.unboundedpress.org 

Residencies and Awards 

• Scholarship and Central Fellowship – Department of Media Arts and Technology; 2009–2010; 
University of California at Santa Barbara;  

• Residency – Atlantic Center for the Arts; May 2009; New Smyrna Beach, FL 
• Scholarship – Department of Media Arts and Technology; 2007–2008; University of California at 

Santa Barbara;  
• Scholarship and Fellowship – School of Music; 2006–2007; University of Virginia 
• Scholarship – School of Music; 2003–2005; California Institute of the Arts 
• Recognized as Outstanding Student in Electronic Music; 2003; University of Oregon 
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Residencies and Awards (continued) 

• 1st Place – 2002 International Citta De Pavia Composition Competition; Density Study No. 3 for 3 
alto saxophones 

• Scholarship – School of Music; 2001–2002; University of Oregon 
• Scholarship – School of Music; 1999–2000; Belmont University 

Primary Interests

• Music Composition 
• Teaching 
• Software design 
• Art history and musicology (with emphasis on 

the American Experimental Tradition) 
• Integration of art and technology 

• Music theory 
• Tuning theory 
• Psychoacoustics, perception and cognition 
• Mathematics and abstract topologies 
• Physics 
• Computer sciences and technologies 

• Complexity theory

Languages

• English – fluent (native language) • German – conversational
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experimental music free to the public in Los Angeles. Michael is a firm believer in art making as an 
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Michael B. Winter Works List 
1026 South Santa Fe Avenue #203 mwinter@unboundedpress.org 
Los Angeles, CA 90021    www.unboundedpress.org 
(current As of May 4th, 2010)        (213) 446-4776 

      

title instrumentation 

(2010)   

pedal, triangle machine, and (perhaps) coda variable 

after eons variable 

Approximating Omega variable 

    

(2009)   

piano machine piano 

recitation, code, and (perhaps) round choir 

field and perfect circuit variable  

for gregory chaitin variable  

for Sol LeWitt variable  

gray codes variable  

    

(2008)   

towards completeness variable  

small world variable  

dissection and field variable  

20 arrows 9 dashes variable  

for orin hildestad variable  

room and seams variable  

seams variable  

    

(2007)   

resonance i  variable  

maximum change variable  

after a koan solo violin 

sound.sound variable  

many many for james orsher and peter kotik variable  
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4 James Orsher variable  

Vein Transcription variable  

Entropic Canon variable  

Three variable  

Transplanting, 06.11.07-06.16.07 (or Transcription, 
USA!) 

variable  

a chance happening solo piano 

cactus for james orsher variable  

1 sample, x performers, y seconds variable  

4 Ascents for James Tenney variable  

    

(2006)   

Trajectories variable  

Prime Decomposition variable  

Intersections I  variable  

Streams I glissandi and electronics 

diy for larry polansky variable  

three books and a dissertation variable  

in tone  variable  

random I  variable  

almost every piece variable  

for cassia streb  variable  

for michael pisaro variable  

sort I  variable 

nothing...I  variable 

    

(2005)   

A Gaussian Canon solo piano 

Infinity III variable 

Lecture on Infinity variable 

a tone for Erik KM Clark  solo violin 

A Flourish variable 

Infinity 2 variable 
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Perspectives I (revised 2010) variable 

Commas variable 

a set of pieces with one note variable 

    

(2004)   

Infinity 1 variable 

Filter IV - P.I.X.L. Study No. 1 tam-tam, cellos, cymbals, voices and 
electronics 

Filter III - Transformation Filter strings and electronics 

Chromatic Study variable 

Tri-Dimensional Canon variable 

Difference 2 clarinets 

2 Filters variable 

Flux voice, bassoon, bass, clarinet, didgeridoo, 
and/or... and 2176 sine tones 

    

(2003)   

Fission (revised 2006) flutes, clarinets, trumpet, horn, 
vibraphones, pianos, and strings 

Coincidental Canon orchestra 

Telot's Crystal fixed digital media 

    

(2002)   

A Meditation for Solo Piano solo piano 

Beat Canon variable 

Density Study No. 2 fixed digital media 

    

(2001)   

The Other Self fixed digital media 
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Michael B. Winter Performances 
1026 South Santa Fe Avenue #203 mwinter@unboundedpress.org 
Los Angeles, CA 90021    www.unboundedpress.org 
(current As of May 4th, 2010)        (213) 446-4776 

As artist    

when what where notes & miscellany 

03.21.2010 room and seams The Bridge 
Progressive Arts 
Initiative; 
Charlottesville, VA 

as part of the second installation of 
Architectures of Sound, curated by 
David Kant and Cameron Hu 

01.23.2010 for Sol LeWitt the wulf.; Los 
Angeles, CA 

Performed by the Red Light New 
Music ensemble. 

01.13.2010 Perspectives I Issue Project 
Room; Brooklyn, 
NY 

As part of the MATA Interval Series 
– Architectures of Sound; 
performed by Casey Anderson, 
David Kant, Aaron Meicht and Phil 
Rodriguez. 

11.24.2009 a chance happening... Huddersfield 
University, UK 

As part of the Huddersfield New 
Music Festival; performed by Philip 
Thomas. 

11.19.2009 for gregory chaitin The Stone; New 
York, NY 

the wulf. @ The Stone. 

10.24.2009 field and perfect circuit Tenri Cultural 
Center; New York, 
NY 

Performed by the Transit ensemble. 

08.27.2009 recitation, code, and 
(perhaps) round 

St. Wenceslas 
Church; Ostrava, 
CZ 

As part of the 2009 Ostrava Days 
New Music Festival; performed by 
Canticum Ostrava. 

08.19.2009 field and perfect circuit Janacek 
Conservatory; 
Ostrava, CZ 

As part of the 2009 Ostrava Days 
New Music Festival; performed by 
Joe Kudirka, Sam Sfirri, Taylan 
Susam, and David Kant. 

06.11.2009 for Sol LeWitt California Institute 
of the Arts; 
Valencia, CA 

Performed by the Dogstar 
Orchestra. 

06.05.2009 for gregory chaitin Atlantic Center for 
the Arts; New 
Smyrna Beach, FL 

As part of the Inside-Out 
Showcase. 

05.28.2009 for gregory chaitin Atlantic Center for 
the Arts; New 
Smyrna Beach, FL 

  

05.16.2009 sort I the wulf.; Los 
Angeles, CA 

Performed by the Sisters Streb. 

05.01.2009 towards completeness; 
dissection and field 

the wulf.; Los 
Angeles, CA 

Performed by Beardman and 
Friends. 

04.26.2009 small world Huddersfield 
University, UK 

As part of the Nothing New 
Conference; performed by the 
Edges Ensemble. 
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02.15.2009 room and seams Willow Place 
Auditorium; 
Brooklyn, NY 

Performed by the SEM ensemble. 

10.11.2008 sound.sound Circular 
Congregational 
Church; Charleston, 
SC 

As part of the silence: 4’33” and 
beyond series curated by Jason 
Brogan. 

09.11.2008 20 arrows 9 dashes University of 
Nebraska, Omaha 

As part of the Microscore Project @ 
ARTsaha! Festival; performed by 
Johnny Chang and Jessica CAtron. 

09.09.2008 a chance happening... the wulf.; Los 
Angeles, CA 

Performed by Danny Holt. 

09.01.2008 20 arrows 9 dashes the wulf.; Los 
Angeles, CA 

As part of the Microscore Project @ 
the wulf.; performed by Johnny 
Chang and Jessica CAtron. 

06.14.2008 for orin hildestad 200 N. Ave. 57; 
Los Angeles, CA 

As part of the Flag Day 
Experimental Barbecue; performed 
by Christa Graf, Orin Hildestad and 
Cassia Streb. 

06.08.2008 sound.sound 30047 Madison 
Way; Val Verde, CA  

Performed by the Dogstar 
Orchestra. 

05.28.2008 Rise I from 4 Ascents for 
James Tenney 

The Pasadena 
Armory; Pasadena, 
CA 

As part of the Los Angeles 
Microfest. 

05.20.2008 Telot's Crystal University of 
California, Santa 
Barbara 

As part of the CreMATe Concert. 

03.08.2008 resonance i The Pescadrome; 
Santa Barbara, CA 

Performed by James Orsher. 

02.29.2008 Transplanting 06.11.07-
06.17.07 

The Pasadena 
Armory; Pasadena, 
CA 

Performed by April Guthrie and 
Cassia Streb. 

02.14.2008 maximum change Willow Place 
Auditorium; 
Brooklyn, NY 

Performed by the SEM ensemble. 

11.13.2007 after a koan University of 
California, Santa 
Barbara 

Performed by Eric km Clark. 

09.01.2007 Streams I Janacek 
Conservatory; 
Ostrava, CZ 

As part of the 2007 Ostrava Days 
New Music Festival; performed by 
the Ostravská Banda. 

07.30.2007 1 sample, x people, y 
seconds 

960 S. Oxford Ave. 
#312; Los Angeles, 
CA 

As part of the Studio Apartment 
Series; performed by Orin Hildestad 
and Mark So. 

07.13.2007 a chance happening... Dangerous Curve; 
Los Angeles, CA 

Performed by Danny Holt. 

07.06.2007 in tone 862 Catalina St. 
#205; Los Angeles, 
CA 

As part of the Studio Apartment 
Series; performed by Christa Graf, 
Orin Hildestad and Tashi Wada 
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07.06.2007 three 862 Catalina St. 
#205; Los Angeles, 
CA 

As part of the Studio Apartment 
Series; performed by Eric km Clark, 
Christa Graf and Orin Hildestad. 

06.09.2007 Fission Riverside Church, 
New York, NY 

Performed by the Locrian Players. 

03.30.2007 Trajectories University of 
Virginia, 
Charlottesville 

Performed by the Now Ensemble. 

12.01.2006 Sort 1 McGuffey arts 
Center; 
Charlottesville, VA 

As part of the Noise in the System 
Series; performed by Wayla 
Chambo. 

10.20.2006 for michael pisaro California Institute 
of the Arts; 
Valencia, CA 

As part of the Tender Buttons 
concert. 

09.08.2006 in tone; Sort I CINE Studio Space 
at the Artcraft 
Strauss Sign 
Factory; New York, 
NY 

As part of the 1st annual concert of 
the Society of Automatic Music 
Notators; performed by SAMN. 

03.22.2006 lecture on infinity California Institute 
of the Arts; 
Valencia, CA 

Performed by James Orsher. 

03.15.2006 lecture on infinity California Institute 
of the Arts; 
Valencia, CA 

Performed by James Orsher. 

11.17.2005 A Flourish California Institute 
of the Arts; 
Valencia, CA 

Performed by April Guthrie. 

08.05.2005 lecture on infinity SUNY; Binghamton, 
NY 

  

05.09.2005 Commas REDCAT; Los 
Angeles, CA 

Performed by the new century 
players. 

05.04.2005 theme and variatons from 
a set of pieces with one 
note 

California Institute 
of the Arts; 
Valencia, CA 

As part of the Music for Six Pianos 
concert. 

04.09.2005 a set of piece with one 
note 

California Institute 
of the Arts; 
Valencia, CA 

As part of A Concert of One Note 
Pieces. 

03.20.2005 Filter III California Institute 
of the Arts; 
Valencia, CA 

Performed by Cassia Streb. 

01.28.2005 Flux REDCAT; Los 
Angeles, CA 

As part of the CEAIT Festival; 
performed by Thadeus Frazier 
Reed. 

05.03.2004 Fission California Institute 
of the Arts; 
Valencia, CA 

Performed by the New Century 
Players. 

04.30.2004 Filter I from 2 Filters California Institute 
of the Arts; 
Valencia, CA 

As part of the new music for winds 
and friends concert; performed by 
the CalArts woodwind ensemble. 
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04.24.2004 Chromatic Study California Institute 
of the Arts; 
Valencia, CA 

As part of the Quiet Night/Quiet 
Music concert; performed by Mark 
So. 

04.16.2004 Filter III California Institute 
of the Arts; 
Valencia, CA 

Performed by Mark Menzies. 

03.04.2005 Flux California Institute 
of the Arts; 
Valencia, CA 

Performed by Thadeus Frazier 
Reed. 

02.09.2004 A Meditation For Solo 
Piano 

California Institute 
of the Arts; 
Valencia, CA 

Performed by Vicki Ray. 

11.06.2003 The Other Self Stanford 
University; Palo 
Alto, CA 

At the Center for Computer 
Research in Music and Acoustics 

05.31.2003 Telot's Crystal University of 
Oregon, Eugene 

As part of Future Music Oregon. 

03.14.2003 The Other Self Arizona State 
University; Tempe, 
AZ 

As part of the 2003 SEAMUS 
conference. 

06.01.2002 Density Study No. 2 University of 
Oregon, Eugene 

As part of Future Music Oregon. 

11.17.2001 The Other Self University of 
Oregon, Eugene 

As part of Future Music Oregon. 

    

As performer    

when what where notes & miscellany 

02.06.2010 Piker and freeHorn by 
Larry Polansky 

the wulf.; los 
angeles, ca 

 

01.13.2010 A Few Rooms by G. 
Douglas Barrett 

Issue Project 
Room; New York, 
NY 

As part of the MATA Interval Series 
– Architectures of Sound. 

01.11.2010 The Collection by Michael 
Pisaro 

Zipper Hall; Los 
Angeles, CA 

As part of the Monday Evening 
Concert series. 

11.19.2009 LiveScore by Harris 
Wulfson; JOHN ASHBERY 
(2 short litanies) and 
readings 32 - 
Landscapeople by Mark So; 
Lucifer in the Shadowlands 
and Elevator Music by 
Laura Steenberge 

The Stone; New 
York, NY 

the wulf. @ The Stone. 

11.07.2009 harmony # by David Kant the wulf.; Los 
Angeles, CA 

  

10.16.2009 Distance Learning by John 
Lely 

the wulf.; Los 
Angeles, CA 

  

10.04.2009 LiveScore and Durations by 
Harris Wulfson 

the wulf.; Los 
Angeles, CA 
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08.19.2009 beauty and industry by Joe 
Kudirka 

Janacek 
Conservatory; 
Ostrava, CZ 

As part of the 2009 Ostrava Days 
New Music festival. 

07.05.2009 ordinary education (the 
true course of events) by 
Mark So 

REDCAT; Los 
Angeles, CA 

  

06.12.2009 for Dan Flavin and ...the 
sharpening line of crests 
by Sam Sfirri 

the wulf.; Los 
Angeles, CA 

  

06.11.2009 huddersfield trio by Joe 
Kudirka; for maaike 
schoorel Taylan Susam 

California Institute 
of the Arts; 
Valencia, CA 

With the Dogstar Orchestra. 

06.09.2009 composition 1960 #7 by La 
Monte Young; swell piece 
no. 2 by James Tenney; 
the void by Ulrich Krieger; 
ascending series no. 5 by 
Michael Pisaro; assembly 
(melody 1) by Casey 
Thomas Anderson; bands 
by John Hastings 

California Institute 
of the Arts; 
Valencia, CA 

With the Dogstar Orchestra. 

01.23.2009 one for all and all for one - 
the music of Sara Roberts 

the wulf.; Los 
Angeles, CA 

As part of A Program of 
Participatory Pieces. 

01.10.2009 westin bonaventure hotel: 
documentary music #3 by 
James Orsher 

the wulf.; Los 
Angeles, CA 

  

12.07.2008 In a Large Open Space by 
James Tenney; 
fades/crossfades by Casey 
Thomas Anderson 

the wulf.; Los 
Angeles, CA 

  

10.06.2008 A Few Silences by G. Doug 
Barrett; State of the Union 
by Adam Fong 

downtown; long 
beach, CA 

As part of Soundwalk08. 

09.06.2008 canon, beauty and industry 
and solidarity by Joe 
Kudirka; two durations, 
excersize, three yellow 
events by Goerge Brecht 

the wulf.; Los 
Angeles, CA 

  

08.22.2008 durations by Harris 
Wulfson; unfurl by Alison 
Knowles 

the wulf.; Los 
Angeles, CA 

  

06.12.2008 the rain of alphabets by 
Michael Pisaro 

California Institute 
of the Arts; 
Valencia, CA 

With the Dogstar Orchestra. 

06.08.2008 Motor Vehicle Sundown 
(Event) by George Brecht; 
pleasure cruise for ... 
(series) by Mari Garrett 

30047 Madison 
Way; Val Verde, CA  

With the Dogstar Orchestra. 
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06.06.2008 Fragments by Jason 
Brogan; Jesus' Blood 
Never Failed Me Yet by 
Gavin Bryars; Chair Piece 
for George Brecht by 
Alison Knowles; What Do 
We Do Now? Performance 
by Adam Overton 

California Institute 
of the Arts; 
Valencia, CA 

With the Dogstar Orchestra. 

06.04.2008 weiss/weisslich 5b by 
Peter Ablinger 

California Institute 
of the Arts; 
Valencia, CA 

With the Dogstar Orchestra. 

06.03.2008 Joseph Kudirka by Mark 
So; Swell Piece by Kames 
Tenney; 2008(3) by 
Manfred Werder 

California Institute 
of the Arts; 
Valencia, CA 

With the Dogstar Orchestra. 

04.25.2008 the mayan empire by Mark 
So 

The Pasadena 
Armory; Pasadena, 
CA 

As part of the Los Angeles 
Microfest. 

03.21.2008 The Collection by Michael 
Pisaro; for percussion 
perhaps, or ... by James 
Tenney; ihwetunings for 
twenty by Antoine Beuger; 
4'33" by John Cage 

REDCAT; Los 
Angeles, CA 

As part of the 4'33" and Beyond 
concert; with the Experimental 
Music Workshop. 

03.08.2008 doublings (6) by James 
Orsher 

University of 
California, Santa 
Barbara 

  

03.03.2008 the delhi train station by 
James Orsher 

Sea and Space 
Gallery; Los 
Angeles, CA 

As part of The Freed Reed concert. 

02.25.2008 Present Joys by James 
Orsher 

University of 
California, Santa 
Barbara 

  

11.11.2007  just walking around 
[ashbery series] by Mark 
So 

Goleta County 
Beach Park; Goleta, 
CA 

As part of the Mark So: Late Early 
Works festival. 

11.10.2007 sigh of our present (blue 
sonata) [ashbery series] 
and readings 20 - syringa 
[ashbery series] by Mark 
So 

Downtown Santa 
Barbara Farmers' 
Market; CA 

As part of the Mark So: Late Early 
Works festival. 

11.10.2007 when the sun went down 
[ashbery series] by Mark 
So  

University of 
California, Santa 
Barbara 

As part of the Mark So: Late Early 
Works festival. 

11.09.2007 new leaves (a mood 
survives) [ashbery series] 
by Mark So 

University of 
California, Santa 
Barbara 

As part of the Mark So: Late Early 
Works festival. 

11.05.2007  the roman empire by Mark 
So 

University of 
California, Santa 
Barbara 

As part of the Mark So: Late Early 
Works festival. 

10.06.2007 some tunes volumes I, II 
and III by Eva-Maria 
Houben  

University of 
California, Santa 
Barbara 
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08.31.2007 second symphony by John 
Lely; composition 1960 #7 
by La Monte Young; works 
of Ben Patterson. 

Ostrava Cultural 
Center; Ostrava, CZ 

As part of the 2007 Ostrava Days 
New Music Festival; performed with 
Fluxus and Associates. 

08.15.2007 Exercise 1 by Christian 
Wolff 

Hotel Maria; 
Ostrava, CZ 

As part of the 2007 Ostrava Days 
New Music Festival. 

 
07.30.2007 

 
swan vestas (cutters 
choice) by Johnny Chang; 
sigh of out present (blue 
sonata) [ashbery series] 
by Mark So 

 
960 S. Oxford Ave. 
#312; Los Angeles, 
CA 

 
As part of the Studio Apartment 
Series. 

05.09.2005 Ancient Music by Eric km 
Clark 

REDCAT; Los 
Angeles, CA 

With the New Century Players. 

05.04.2005 bad pianos work best by 
Joe Kudirka 

California Institute 
of the Arts; 
Valencia, CA 

As part of the Music for Six Pianos 
concert. 

04.11.2005 Ordinary Matter, Fits and 
Starts and Changing the 
System by Christian Wolff 

California Institute 
of the Arts; 
Valencia, CA 

With the Experimental Music 
Workshop. 

09.08.2004 chamber music (for george 
brecht), (night) for 
percussion perhaps, or …, 
the swell pieces (1, 2, and 
3), harmonium # 7 and in 
a large, open space by 
James Jenney 

California Institute 
of the Arts; 
Valencia, CA 

With the Experimental Music 
Workshop. 
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Abstract

Structural Metrics: An Epistemology

by

Michael Benjamin Winter

Structural Metrics is an epistemological survey of methods of comparing struc-

tures. The text shows how fundamental limits of knowledge affect our ability to ob-

jectively compare the intrinsic rules and relationships that govern two given objects.

Several ways of analyzing, generating, comparing and mutating structures are examined

throughout bringing four fields together: music, communication theory, algorithmic in-

formation theory and graph theory. Even though Structural Metrics is rooted in music,

it applies to many other fields and is quintessentially pandisciplinary.

The epistemological survey results in two important and novel findings. The

first finding came from asking whether it is possible to objectively determine structural

similarity of two objects (such as pieces of music). What are the limits of such metrics?

A survey of structural metrics reveals a fundamental tradeoff of objectivity for practi-

cality in structural analysis. While we may know that two objects share information,

it is basically impossible to know exactly how much information they share. The most

objective metric is based on the minimal programs of two objects. A minimal program,

defined by Gregory Chaitin as the smallest computer program that calculates a given

xx



object, is a maximally compressed encoding of an object. Knowing whether or not a

program is minimal is essentially impossible due to the halting problem, which is the

inability to compute whether an arbitrary program halts. The halting problem was first

pointed out by Alan Turing in 1936. That is, what we need to know to objectively deter-

mine differences in structure, we cannot know. All other methods of structural analysis

that do not use maximally compressed representations of the objects under examina-

tion sacrifice the objectivity of the analysis. What is perhaps often gained are more

practically efficient methods. The second finding resulted from the initial goal of imple-

menting structural metrics in evolutionary algorithms. Practical structural mutations

cannot be made to the genome of an object (the computer program that generates it)

because a minor mutation may result in a non-halting program. This raised the question

of how an abstract mathematical theory of evolution can incorporate mutations to the

genome and model ‘real-world’ properties of evolution (regardless of practicality). The

result is a new abstract mathematical theory of evolution that takes into account the

halting problem as the reason for evolutionary advancement in both minor and major

evolutionary leaps.

The text is organized as follows. First, preliminary discussions on music, mu-

sic related philosophies and information theory are provided. Then, ways to generate

and represent musical structures are illustrated followed by a survey of several struc-

tural metrics. Finally, it is shown how these metrics can be implemented in ‘artificial’

evolutionary algorithms in order to reveal how such algorithms do not mimic several im-

portant properties of ‘real-world’ evolution. Thus, the text itself has a trajectory from

the generative to the analytical and back. In conclusion, a new abstract mathematical
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definition of ‘real-world’ evolution is given along with a return to the more philosophical

discussions set forth in the beginning. At the end, I present several musical works that

informed and were informed by the research.
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Preface

“...the equivocal paradigm of all fidelity: proofs of love, ethical rigor, the
coherency of a work of art, the accordance of a politics with the principles
which it claims as its own—the exigency of such a fidelity is propagated
everywhere: to be commensurable to the strictly implacable fidelity that
rules the discourse on being itself. But one can only fail to satisfy such
an exigency; because the fact that it is the type of connection which is
maintained in the mathematical text—despite it being indifferent to the
matter—is something which proceeds directly from being itself. What one
must be able to require of oneself, at the right time, is rather that capacity
for adventure to which ontology testifies, in the heart of its transparent
rationality, by its recourse to the procedure of the absurd; a detour in which
the extension of their solidity may be restituted to the equivalences: ‘He
shatters his own happiness, his excess of happiness, and to the Element
which magnified it, he rends, but purer, what he possessed.’”

Alain Badiou from Being and Event [14]

This preface provides a philosophical context to what follows with three highly

related premises that warrant initial address.

1) Music and mathematics exist for different reasons, yet objects in one domain

can derive objects in the other. While each is not requisite for the other, as Alain

Badiou expresses, their connection “is maintained in the mathematical text, despite it

being indifferent to the matter.”

Tom Johnson also reflects on this connection, stating:

“This Marcel Duchamp principle, the ‘readymade’ or the ‘objet trouvé,’ is
now recognized everywhere as a perfectly valid way of making art and it is
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now quite natural that a composer or artist might choose to work with a
found mathematical object, like Pascal’s triangle or the Narayana series or
some automaton, just as well as with a urinal, a bicycle wheel, a comb, or a
bottle rack.” [64]

With respect to analytical music theory, Structural Metrics examines ways

to develop mathematical objects that represent musical structures. With respect to

generative music theory, Structural Metrics examines ways to develop musical structures

from mathematical objects and more importantly, to find mathematical objects for

music derivation.

2) Music is sets of possibilities and various sets may share information. A musi-

cal process is the genesis of a musical set over time encompassing all events from concept

to percept with respect to sound and silence. This includes instruction, interpretation

and realization. In this context, the definition of ‘event’ is adopted from Badiou: it is

a rupture from the status quo, which illuminates the space of all possible events. That

is, the space of all events that have happened and the void of happenings that may yet

come. This illumination, by virtue, perturbs the space. An event is the only happening

that actually truly defines the world—the set of possibilities—being explored. While

one can attempt to define a set of possibilities from the present looking forward, the

actual possibilities of a concept are only illuminated in the presence of the event looking

backwards.

A simple iteration of one (of many) musical processes illustrates this. A com-

poser has a concept, which may already define several possibilities (especially if it in-

volves randomness, stochastics and/or indeterminacy). S/he creates a score which is a

set of instructions—written, verbal, machine, etc.—that accounts for the above possi-
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bilities and functions as a prompt to action [16]. (Note that several scores can produce

similar results [71].) An interpreter, be it a performer or a computer, then realizes the

score into sounds and silences. These sounds and silences are the piece—nothing else.

The piece is then experienced/perceived by a listener and considered. The formation

of the concept, the creation of a score that outlines possibilities, the interpretation and

realization, and finally experience/perception are all events. They are happenings man-

ifested from the space of all events. Each step away from the concept may illuminate

more and more possibilities while ultimately leading to a series of singular events.

If music is set, then possible realizations of a given piece might be super/sub-

sets of or intersect with the possible realizations of some other piece. More importantly,

these sets may share information. It may take less to calculate or describe them together

than separately. Structural Metrics is an epistemology—the exploration of inherent

limits of knowledge—of trying to measure the mutual information of two objects and

thus extends to the mutual information of pieces of music.

3) At once, music can be logical and absurd. A piece may generally adhere to

a set of axioms/truths, but may always break from those logics to establish opposing

logics (or absurdities). Furthermore, absurdities may result from the incalculability

of the concept-to-percept transparency of music, which is the inability to know the

extent that a perceiver will understand the logic of a work’s concept through musical

experience. This is partially due to what James Tenney calls the subjective set:

“...[the] expectations or anticipations [arising during a musical experience]
previous to those occasioned by the particular piece of music now being
considered.”

[99]
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The experience of music can be transcendent. Any logical rigor of a piece may

or may not be perceived and/or appreciated as such. A perceiver need not understand

the rules that govern a piece of music in order to enjoy it. Various logics provide a

means to discuss music. Composers have always attempted to generate and understand

music through logic, especially using mathematical formalizations. The writings of

Charles Ames [6, 5, 8, 7, 9, 10, 11], Clarence Barlow [15], John Cage [21], Tom Johnson

[62, 63, 64, 65, 66, 67], Larry Polansky [84, 82], James Tenney [98, 100] and Iannis

Xenakis [106], among many others, provide an abundant wealth of theoretical insight.

James Tenney posits the following bases for a theory of music:

“First, it should be descriptive—not pre- (or pro-) scriptive—and thus aes-
thetically neutral. That is, it would not presume to tell a composer what
should or should not be done, but rather what the results might be if a
given thing is done. Second, it should be culturally/stylistically general...
Finally—in order that such a theory might qualify as a ‘theory’ at all,...
it should be (whenever and to the maximum extent possible) quantitative.
Unless the propositions, deductions, and predictions of the theory are for-
mulated quantitatively, there is no way to verify the theory and thus no
basis for comparison with other theoretical systems.” [98]

I believe very strongly in Tenney’s bases for a comparative theory of music.

Comparability is necessary for the epistemological survey that follows. Still, I acknowl-

edge that some theories (such as certain theories of aesthetics) may not be quantifiable

at all. I believe the more important point Tenney is making is that when a theorist

suggests that one “should or should not” do something, s/he is in fact assuming the

authority to tell others what is right or wrong or good or bad with respect to music.

The quality of music is subjective and varies from person to person according to their

personal taste. Discourse that suggests what “should or should not be done” is in fact
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not a theory at all, be it quantitative or aesthetic, but rather just an expression of

personal taste.

The theories formulated by the composers above provide several suitable mod-

els for the following epistemology of comparing structures as they tend to subscribe to

Tenney’s bases. While these theories are quantitative, they are predicated on subjective

observation (as with almost all theories). Henri Poincaré wrote in his essay “On the

Foundations of Geometry” the following:

“We choose this geometry rather than that geometry, not because it is more
true, but because it is more convenient... If our experiences should be consid-
erably different, the geometry of Euclid would no longer suffice to represent
them conveniently, and we should choose a different geometry... In fine, it
is our mind that furnishes a category for nature. But this category is not
a bed of Procrustes into which we violently force nature, mutilating her as
our needs require. We offer nature a choice of beds among which we choose
the couch best suited to her stature.” [81]

Though the usability of a theory might substantiate it to some extent, in

music, experiences are often “considerably different,” especially from person to person.

Experiences are also independent of the logic behind the concept of a work. Just as

there are several ways to create music, there are several ways to experience and perceive

music. As Cage points out, “composing’s one thing, performing’s another, listening’s a

third” [21]. Because of this, it is difficult to prove that a particular means of analysis

is objective and comprehensive. Even though mathematics can aid in formalizing an

analytical method, the concepts of formal axiomatic systems and rigorous proofs are

rather specific to mathematics with no real equivalent in music. Furthermore, as Kurt

Gödel, Alan Turing and Gregory Chaitin have all shown, mathematics cannot even fully

prove itself [27, 50, 101]. However, ideas in different fields—music, science, mathematics,
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philosophy, etc.—may have profound implications on one another that may engender

hitherto unheard musics, mathematics, and philosophies.

The statement that ‘at once, music can be logical and absurd’ is illustratable in

many ways. Perhaps one beauty of music is that musicians, and artists in general, often

freely combine determinism and indeterminism, symmetry and asymmetry, dynamism

and stasis, and many other opposing logics. Also, people share music throughout the

world even though it has little to no materiality (this is certainly the case if taken

literally). Music is one of the few acts of humankind where the absurd may seem logical

and the logical may seem absurd. In the quote preceding this chapter, Badiou states,

“What one must be able to require of oneself, at the right time, is rather that capacity

for adventure to which ontology testifies, in the heart of its transparent rationality, by

its recourse to the procedure of the absurd...” The transparent rationality of music is

like ontology itself. Understanding the fidelity of music will sometimes require us to

recourse to the procedure of the absurd.

It is with these fundamental premises that we proceed...
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Chapter 1

Introduction

“...(structure) usually refers more to an internal aspect of sound—‘connec-
tions’ or interrelations among component parts which (interrelations) are
not necessarily apparent ‘on the surface’ of the form—i.e. in its shape.”

James Tenney from META + HODOS [99]

“You have a law of nature if there is compression, if the experimental data is
compressed into a computer program that has a smaller number of bits than
are in the data that it explains. The greater the degree of compression, the
better the law, the more you understand the data. But if the experimental
data cannot be compressed..., if the smallest program for calculating it is
just as large as it is then the data is lawless, unstructured...”

Gregory Chaitin from Meta Math! [33]

1.1 Genesis of Structural Metrics

Initially, I started out with a rather simple goal: to define a set of viable (per-

haps even practical), objective methods to compare structures of various pieces of music

with the hope of extending these methods to evolving musical materials and comparing

structures in other domains. First, structure needed an unequivocal definition. Two

statements on structure are provided at the beginning of this chapter: one on the inter-
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relations of elements and the other on compressibility (or redundancy). I adopted these

as the primary criterion of structure.

In META + HODOS, James Tenney [99] describes two primary aspects of

form: shape and structure. He explains shape as an “external” aspect of sound based

on parametric profiles, and structure as an “internal” aspect of sound based on the

connectivity of elements. In “Morphological Metrics,” Larry Polansky provides several

methods of comparing morphologies (or shapes defined by ordered-lists of elements).

Structural Metrics is the sister work of Polansky’s seminal article investigating metrics

on the other aspect of form; i.e. structures as opposed to shapes.

While this dissertation has changed significantly from my initial investigations,

I am borrowing to some extent (as I originally set out to do) the format of “Morpho-

logical Metrics” along with certain principles such as “aesthetic neutralism” as well

as “comprehensiveness” with respect to musical material and what Tenney refers to

as “scale,” which is the perceptual level (or scope) one is investigating/considering.

Temporal gestalt analysis, morphological metrics, and structural metrics apply to any

materials, any aesthetic, between and within any “hier/hol/heterarchical level” [82], and

between or within any two objects. In META + HODOS, the element-clang-sequence

hierarchy illustrates this. A sequence on one level can be an element on another, higher

level. In “Morphological Metrics,” morphologies or morphological metrics on one level

can be elements of a morphology on another, higher level. Finally, in the theory of

Structural Metrics, structures or structural metrics on one level can be elements of

another, higher-level structure.
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Structural analysis in any field is nothing new. However, the discourse on com-

paring structures (especially in music) often lacks a concrete definition of structure and

unequivocal gauges of the objectivity (or conversely, subjectivity) and even accuracy of

given methods. I thought graph theory may provide solutions to these problems. My

initial research investigated the application of graph theory to the analysis and genera-

tion of musical structures. I developed and formulated this approach over many years,

but still could not comprehensively address or conquer any of the problems inherent to

other techniques. These methods, which are still included in this text, while perhaps

novel with respect to music theory, turned out to have the same shortcomings of former

methods of structural analysis. Essentially, I became stuck and needed to figure out

why the above problems did not go away. In lieu of this, I changed my focus from prac-

tical applications of structural metrics to an epistemology of structural metrics in order

to determine why objective structural analysis seemed so difficult. Structural Metrics

is an epistemological survey of methods of comparing structures. The text shows how

fundamental limits of knowledge affect our ability to objectively compare the intrinsic

rules and relationships that govern two given objects.

The epistemological survey results in two important and novel findings. The

first finding came from asking whether it is possible to objectively determine structural

similarity of two objects (such as pieces of music). What are the limits of such metrics?

A survey of structural metrics reveals a fundamental tradeoff of objectivity for practi-

cality in structural analysis. While we may know that two objects share information, it

is basically impossible to know exactly how much information they share. Algorithmic

information theory provided the benchmark of a completely objective (however terribly
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impractical) structural metric that illuminates clear limits of knowledge when compar-

ing structures. The metric is based on the minimal programs of two objects. A minimal

program, defined by Gregory Chaitin as the smallest computer program that calculates

a given object [27], is a maximally compressed encoding of an object. Knowing whether

or not a program is minimal is essentially impossible due to the halting problem, which

is the inability to compute whether an arbitrary program halts. The halting problem

was first pointed out by Alan Turing in 1936 [101]. That is, what we need to know

to objectively determine differences in structure, we cannot know. All other meth-

ods of structural analysis that do not use maximally compressed representations of the

objects under examination sacrifice the objectivity of the analysis. What is perhaps

often gained are more practically efficient methods. The second finding resulted from

the initial goal of implementing structural metrics in evolutionary algorithms. Practical

structural mutations cannot be made to the genome of an object (the computer program

that generates it) because a minor mutation may result in a non-halting program. This

raised the question of how an abstract mathematical theory of evolution can incorporate

mutations to the genome and model ‘real-world’ properties of evolution (regardless of

practicality). The result is a new abstract mathematical theory of evolution that takes

into account the halting problem as the reason for evolutionary advancement in both

minor and major evolutionary leaps. The limits of knowledge explored through struc-

tural metrics can actually be integrated into a rather clear (and simple) mathematical

definition of evolution that builds upon earlier theories.

Throughout the text, methods of analyzing, generating, comparing and mu-

tating structures are formalized from an already established discourse and are examined
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in such a way that shows the objectivity and accuracy of the various methods. Four

fields are brought together to achieve this: music, communication theory, algorithmic

information theory and graph theory. While some of the methods of structural metrics

herein are not at all practical, they help show the limits of our understanding of struc-

ture. Even though Structural Metrics is rooted in music, as will be shown throughout,

it applies to many other fields and is quintessentially pandisciplinary.

The following text is organized as follows. In this chapter, preliminaries for

the following discussion are provided. Then, ways to generate and represent musical

structures are illustrated followed by the examination of several structural metrics.

Finally, it is shown how these metrics can be implemented in ‘artificial’ evolutionary

algorithms in order to reveal how such algorithms do not mimic several important

properties of ‘real-world’ evolution. Thus, the text itself has a trajectory from the

generative to the analytical and back. In conclusion, a new abstract mathematical

definition of ‘real-world’ evolution is given along with a return to the more philosophical

discussion set forth in the preface. In an appendix at the end, I present several musical

works that informed and were informed by the research.

Ultimately, one of my hopes is that readers will explore and discover new

methods of analysis and composition by examining and developing the following ideas,

extending and altering them as they see fit.
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1.2 The World is Programmable: An Introduction to Dig-

ital Philosophy.

It is conceivable that our world is completely digital, made up entirely of bits of

information. Strong proponents of this idea, often called “digital philosophy” or “digital

physics,” include Gregory Chaitin, Seth Lloyd and Stephen Wolfram (see [26, 76, 105]).

In “Programming the Universe” [76], Lloyd suggests that the world around us might

be created by a quantum computer that is the universe. In order to proceed with our

epistemological survey, we must make this one assumption that allows us to equate the

fundamental limits of knowledge with the fundamental limits of computation.

Digital philosophy is strongly rooted in Alan Turing’s conception of an abstract

computing machine [101]. These “Turing machines” are essentially theoretical comput-

ers, which became the blueprint of the modern day computer. Furthermore, there are

“universal Turing machines” that can compute anything computable. Turing showed

that these machines often fail to halt and output a final computation. Most of them get

into a loop that continues endlessly. One of Turing’s most important findings is that

there is no way of computing whether an arbitrary Turing machine will halt. The ques-

tion can be stated as follows: ‘given an arbitrary computer program, is there another

computer program that will determine whether or not the input computer program will

halt?’ The answer is no. This result, known as the “halting problem,” propagates itself

everywhere when trying to compare structures.

First, it may be helpful to spell out a few examples borrowed and extended

from Chaitin:
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binary input −→ computer −→ binary output

theory −→ computer −→ data

concept −→ computer −→ piece of music

DNA (genotype) −→ computer −→ organism (phenotype)

All of these are analogous in a computational sense. The data on the left is a

computer program and the data on the right is the output of the given computation.

Put otherwise, the data on the left is an encoding of structure and the data on the

right is the artifact or the morphology. We distinguish structure from morphology as

follows. Morphology, which is an ordered list of elements, is a completely uncompressed

representation of an object. Structure is the set of rules and relationships between

individual elements and groups of elements that govern the morphology.

The model in the examples above is not necessarily enough for objective struc-

tural analysis. On the left side of each of these equations, one really needs the smallest

(most elegant) program that computes the given output. A minimal/elegant program

is maximally compressed. Knowing the minimal program ensures that extraneous in-

formation has not been added to the encoding. A problem with subjective structural

encodings is that, most likely, more information than is necessary is used to encode the

structure. An elegant and objective theory explains the data in the smallest number of

bits possible. Also, as Chaitin explains in the quote at the beginning of this chapter, if
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the minimal program that outputs a given object is about the same size as the output

itself, then the object “is lawless, unstructured.”

The next question that begs to be asked is ‘how does one go from the chicken

to the egg?’ How can one find a minimal program given a certain output? Chaitin shows

that this is essentially impossible [27] . The proof (by contradiction) goes as follows:

Given a formal axiomatic system, create a paradoxical program P that gen-

erates all theorems in that system until it finds a proof that a particular program Q

(which is larger in bits than the formal axiomatic system) is elegant. So P must be

smaller than Q and at the same time be able to find Q. Such a P is a contradiction

because if Q is elegant, there cannot be a program smaller than Q that generates it.

This turns out to be a really dangerous version of incompleteness first proved

by Kurt Gödel [50]. It is the reason why going from the chicken to the egg—from the

object to what created it—is often impossible. One can attempt to run all possible

computer programs of size less than the desired output, but it is impossible to know

whether or not these smaller (possibly minimal) programs will halt in ten, one hundred,

one thousand, one million years, etc., or if they will just run forever. You might find a

program smaller than the morphology it outputs, but if even smaller programs that have

not yet halted continue running in the background, you cannot know if the relatively

small program that you found is elegant.
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1.3 A Note About Program-Size Versus Run-Time

Tenney also points out in META Meta+Hodos [99] that morphology/shape is

time-dependent while structure is an out of time characteristic. This fact is recapitulated

in the computation of elegant programs. An elegant program is often smaller (in bits)

than the data it outputs. If so, the number of computations (or run-time) of the program

might be greater than the size of the output. The creative musical process also indicates

this: composers typically do not spontaneously generate music, rather they set out with

an initial (often simple) concept that develops over time. For the most part, the amount

of time taken to create a piece (including all thought processes) generally exceeds the

length of time of that particular piece.

Note that we search for minimal programs strictly for analytical reasons. Min-

imal programs provide an ideal for comparing structures. Nonetheless, it is certainly

possible that art might adhere to a different paradigm such as the computations of very

large computer programs that have long run-times with simple outputs. That is, a com-

putation where each bit of the input program contributes a fractionally small amount

of information to the output.

1.4 Music, Information, Communication and Function

The music-making process is a series of communications through several media

(ultimately resulting in sound and silence). Therefore, principles of communication set

forth in Claude Shannon’s seminal work, “A Mathematical Theory of Communication”

[92] can apply to music: the composer encodes information (a message) and transmits
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it through some channel (like performers vibrating air); then, a listener receives and

decodes the information. Tenney explicitly shows how Shannon information theory

can apply to music in META Meta+Hodos [99]. Also, Abraham Moles has written

significantly about information theory as it applies to perception and aesthetics (for

example, see [77]).

Typically, one intends unambiguous communications without any ‘noise in the

system.’ The sender and the receiver both know the codewords and share the same

grammar. Perhaps what distinguishes art is that it does not abide by such standards.

The composer may encode a message that already contains ambiguity (openness), it

may be further obfuscated by interpretation and then the listener most likely does not

have the same dictionary and/or grammar as the composer when decoding the mes-

sage. These factors contribute to the incalculability of concept-to-percept transparency

explained in the preface.

In “Cognitive Constraints on Compositional Systems,” Fred Lerdahl [72] points

out that the set of compositional grammars differs from the set of listening grammars.

The intersection of the two greatly affects functions of music (e.g. narrative). Within

cultures, many people have the same cultural embeddings which may result in similar

compositional and listening grammars. For example, the transmission success of nar-

rative in music greatly depends on this. However, the composer, no matter how hard

s/he might try, cannot guarantee that an intended message—be it narrative or any-

thing else—will be properly received. Experimental music often embraces this noise in

the system (unknowable outcomes [21]), while narrative music often tries to minimize

it. Pop music, for example, frequently references (often overtly) common cultural em-
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beddings. Generally, similarities in compositional and listening grammars contribute

to status-quo opinions about certain works within a culture and differences in tastes

between cultures. The primary focus of this text is the objectivity (or subjectivity) and

accuracy of various analytical methods and is not at all concerned with functions of

music and musical structures.

1.5 Measures of Structure; Analysis and Empiricism

Each message in the music making process represents a morphology, an or-

dered list of elements ultimately expressible as a binary string. These elements can

be anything: musical events and materials such as sounds and silences; parameters of

musical events like pitch, duration, timbre; or even larger-scale gestalts and sequences.

How does one determine the amount of structure of a message? According to

Gregory Chaitin, redundancy (non-randomness) indicates structure (as opposed to ran-

domness or complexity). He defines (program-size) complexity as the minimum amount

of information needed to specify an object (such as a morphology of elements). Imag-

ine the following communication system: the transmission is a computer program that

encodes a message representing an object, the channel is the computer, the output

of the program is the object itself. If the smallest program needed to compute the

output is smaller than the output itself, the object has structure (has redundancy).

Chaitin connects this to Shannon entropy in “A Theory of Program-Size Complexity

Formally Equivalent to Information Theory” [27]. As shown above, Chaitin also proves

that program-size complexity (also known as Kolmogorov complexity after Andre Kol-
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mogorov, who independently came up with similar results as Chaitin) is incomputable

(for more on program-size complexity, see [95, 25, 69]). Furthermore, he shows that

there exist objects that are maximally complex, axioms that are not self-evident. One

example of such an object is the halting probability (first defined by Chaitin), which

is the probability that a computer program generated by tosses of a fair coin will halt.

Since no algorithm determines whether an arbitrary program halts, there is no way to

know with complete accuracy the probability that a random program halts.

Unlike the halting probability, music is often highly structured (not maximally

complex). Still, because of the halting problem, there are fundamental limits on how

accurately and objectively we can compute the similarity of two arbitrary pieces of

music. Chaitin’s findings promote an approach common to music analysis, an empirical

one.

1.6 Encoding Structure

It is a difficult task to determine an object’s amount of structure and yet

another to encode the structure itself. Formalizing structural metrics requires encoding

both the interrelations and redundancies of the objects under investigation. An ideal

structural metric compares the size of the elegant (or minimal-size) programs needed

to compute the respective objects. If all redundancies are removed (as in an elegant

program), then the number of bits alone represents the level of complexity. Next, the

interrelationships between the elements are by definition encoded because the output of

the program is the object itself. In his book Meta Math! [33], Chaitin himself suggests
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this. He explains that calculating the mutual information of elegant programs that

create music would produce viable metrics on style. Mutual information is a measure of

the amount of information two objects share. (Mutual information was originally defined

by Claude Shannon [93], but has been extended by Chaitin in his theory of program-size

complexity.) Also, in Chaitin’s earlier book Algorithmic Information Theory [29], he

writes in a footnote that his work relating program-size complexity and biology (see

[26, 28]) applies to music.

Since there is no way to compute whether or not a program is elegant, an

empirical approach comes in handy even though such analysis is subjective and, as

explained above, results in structural encodings with larger amounts of information

than necessary. Still, one can define an arbitrary type of relationship, analyze the

object under investigation looking for said relationship and then calculate redundancies

of that relationship. In this case, it is important to define meaningful relationships that

are not completely spurious.

1.7 A Survey of a Few Methods of Musical Analysis with

Respect to Program-Size Complexity

Significant work has been done in analyzing relationships and redundancies

within a morphology. Some of Polansky’s metrics use matrix representations of rela-

tionships (see [82]). Robert Morris has produced similar techniques [78]. With respect

to redundancy, the study of compression schemes is a well established field dating back

to the inception of Shannon information theory. David Huffman extends Shannon’s
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work in “A Method for the Construction of Minimum-Redundancy Codes” [59] (see

also [53, 86] for other compression techniques and [61, 70] for music specific compres-

sion techniques).

The work of David Cope, which he calls “musical intelligence” [38, 39] uses

a model of analysis that can be compared to the ideal of finding minimal programs in

algorithmic information theory. Much of Cope’s work involves computer simulations

of past musical styles. His interests lie in the ability of a machine to mimic styles of

composers such as Beethoven and Bach. While his approach is rather convincing—he

has generated numerous stylistically accurate pieces of older composers—he does not

necessarily abide by Tenney’s bases for a musical theory explained in the preface. For

instance, his approach is style-specific. Also, it is unclear if his analytical methods

actually provide information on the rules that govern a piece.

Cope’s methods proceed similarly to Hidden Markov Models (see [24, 48]) by

Markov analysis on a database of pieces of a given style. Since Cope uses rather large

databases to recombine new music from extant music, the generated pieces are bound

to be stylistically accurate. Such techniques do not really encode the rules behind a

given set of pieces but rather produce results that share statistical properties to the

input database. For Cope’s purposes, this is completely satisfactory. Such a technique

is essentially the polar opposite of finding minimal programs. With minimal programs,

a piece is computed using the least amount of information, whereas Cope’s technique

is predicated on large amounts of information (in the database). Also, while Cope

maintains that he is using an evolutionary method, he actually does not seem to have

a fitness test. Instead, as mentioned above, he ensures stylistic similarity by virtue of
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the fact that the database from which he draws is large and has consistency. He does

not compare the output with the source. While he can produce stylistically accurate

results, he cannot produce a piece that is measurable distant from the style of the pieces

in the database since there is no metric. At best, he can use a database consisting of

pieces of various styles.

However, a structural metric (including one based on Markov analysis that

will be shown later) can be used as a fitness test for evolutionary methods of generating

music. When an evolutionary algorithm implements a structural metric for a fitness

test (as presented in the chapter on structural mutations), then it is possible to evolve

a piece measurably distant to other pieces.

Ultimately, finding a minimal program that produces a set of pieces is the

‘lowest-level’ approach because a minimal program is essentially the genome of a given

object. Cope himself suggests this in his book, Hidden Structure: Music Analysis Us-

ing Computers [40]. Recombination strictly on the phenotypical level does not model

(creative) evolution. Not only do composers borrow and steal, they also innovate.

They make small conceptual leaps that propagate and result in drastic shifts in musical

paradigms and styles.

The field of music information retrieval provides other analytical techniques

comparable to the analysis of minimal programs (in fact, there are entire repositories

dedicated to the organization of the multitude of publications on the topic, see [1]).

Many of these projects such as the “Music Genome Project” compare large sets of

feature vectors that are attributed to songs in order to achieve metrics between various

pieces. Often the features are a mixture of objective (such as instrumentation) and
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subjective (such as style) criteria. As opposed to Cope’s method, such comparisons can

actually provide a value of distance between two works. On the other hand, as with

Cope’s analytical methods, comparisons are not at all made between the genes of various

pieces of music (despite what the title, “Music Genome Project,” suggests). A ‘feature’

is a result of an object’s genome. While such music information retrieval techniques

have proven very effective for practical purposes such as suggesting songs that someone

might liked based on a previous record, they do not elucidate the intrinsic rules of a

piece at their most fundamental level.

1.8 What is to Come

In the following chapter, it is shown that various techniques implementing

graph and/or information theory provide several solutions of varying practicality to the

problem of encoding structures for comparison. These structural encodings are then

used for structural metrics which are later implemented for (rather artificial) structural

evolutions. In conclusion, an examination of the properties of artificial structural evo-

lutions provides a stepping stone for a computational model of evolution that actually

mimics properties of ‘real-world’ evolution.
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Chapter 2

Structure

2.1 Structure and its Analogs: Local and Global Morpho-

logical Constraints

First, we reiterate our distinction between structure and morphology. Morphol-

ogy, which is an ordered list of elements, is a completely uncompressed representation

of an object. Structure is the set of rules and relationships between individual elements

and groups of elements that govern the morphology. Abstractly, we define structure as a

set of local and global morphological constraints to which a morphology adheres. Local

morphological constraints are equivalent to relationships defined by rules applied to or

observations occurring between adjacent elements in a morphology [104]. Global mor-

phological constraints are equivalent to statistical properties of the entire morphology

that account for redundancies of elements and relationships. These constraints can be

encoded in several ways such as in a computer program that generates the morphology

even just an abstract graph. Such representations closely relate to each other but may
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differ in the amount of compression of the morphology (that is, the size of the structural

encoding). For now, we focus on structural encodings with graphs as there exist several

cogent examples of music using similar ideas. Such examples are provided further in

this chapter.

Morphological constraints can be represented by a connected graph G = (V, E)

where V is a set of vertices and E is a set of vertex pairs. The graph is directed (see

Fig. 2.1) if the vertex pairs are ordered and undirected (see Fig. 2.2) if otherwise.

The vertices of the graph represent elements such as musical parameters and events.

Edges represent satisfactions of local morphological constraints. Vertex and/or edge

labels (often called weightings) can represent global morphological constraints by values

that express the probability or number of times an element or relationship occurs in a

morphology. A well known example of a labeled graph is a graceful graph (shown in

Fig. 2.3). In a graceful graph, edge labels are the difference between labels of connected

vertices such that the list of edge labels goes from 1 to n inclusive (n being the size of

the set of edges).

Labels that represent probability or number of occurrences are essential to

structural analysis because they imply redundancy. However, labels can also represent

other characteristics of an object. Vertices and edges may have multiple labels: one

that implies redundancy and others that represent additional properties. For example,

a label can be assigned a value representing a particular type of element or connection

that can be used for ordering elements and connections between two objects. Another

rather arbitrary musical example is that edge labels can represent the duration of a
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Figure 2.1: A directed graph

Figure 2.2: An undirected graph

musical event or the amount of time between two musical events. There are numerous

such representations that may be useful for generative and analytical purposes.

A path through a graph represents a morphology. Note that local and global

morphological constraints may conflict. A Hamiltonian cycle (see Fig. 2.4) is a mor-

phology satisfying a well-defined global morphological constraint: the path visits each

vertex only once and returns to the start vertex. However, not every graph contains a

Hamiltonian cycle. Classifying graphs that contain certain types of paths such as Hamil-
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Figure 2.3: A labeled graph

tonian cycles is an important problem in graph theory (for examples, see [104, 41, 55]).

In the case that labels represent probabilities, a long enough random walk on the graph

will likely reflect the given distribution as a consequence of the law of large numbers

[18].

2.2 Apriority and Posteriority

Before exploring examples of structural definitions in the creation of art, we

note an important distinction between objective and subjective structural definitions

with respect to concept and percept: an a priori structural definition applies to concept;

alternatively, an a posteriori one applies to percept. A composer can define a piece based

on a set of local and global morphological requirements that encodes an infinite set of

possibilities; however, a realization of that piece is an instance, a “singular multiple”

[14], of the original set. The conceiver defines a structure and derives a morphology,
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Figure 2.4: An icosehedron with a Hamiltonian cycle

whereas the perceiver is presented a morphology—the artifact itself—and must derive

a structure (if they are so inclined).

We make this point because intuitively created art necessitates analysis of the

more subjective, a posteriori definitions. Such definition are only fully validated when

they can be used as a generator of the same results as a priori structural definitions or

elegant programs. Such validation is ideal yet not necessary when taking an empirical

approach.

Still, while a composer may define and encode structure for generative and

analytical purposes, it is important to note that structure is real. It only exists in

realization as the set of interrelations within the artifact itself. Mark So points out,

“Composition, if it has to do with structure, doesn’t exist before (in the score, in your

head) but in the present of realization” [94].
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Figure 2.5: For 1, 2 or 3 People excerpt of instructions

2.3 Historical Premise

2.3.1 Inexplicit Examples

There exists a strong historical precedent for conceptual thinking about struc-

ture similar to the ways presented here. Composers have long been interested in struc-

tural design, computing music with machines and even using graph theory as explained

above. The most abstract definition of structure—simply global and local morpholog-

ical constraints—can be illustrated by pieces such as For 1, 2 or 3 People (1964) by

Christian Wolff, Psaltery (1978–9) by Larry Polansky and Arbor Vitae (2006) by James

Tenney. While there are many other examples, these were chosen for their clarity even

though they do not adhere strictly to the notion of morphological constraints.

In For 1, 2 or 3 People, Christian Wolff defines musical events based on tempo-

ral relationships to other musical events. The notation instructs people to play before,

during, or after another event. Essentially, the piece consists of a set of defined lo-

cal morphological constraints that people spontaneously move through creating musical

morphologies.

22



Figure 2.6: Psaltery sketch

In Polansky’s piece Psaltery, harmonics of different fundamentals replace each

other one by one. Polansky’s original sketch for the piece (see Fig. 2.6) shows the

replacement scheme by a graph where the vertices represent the pitches and the edges

represent the replacements (which are similar to local morphological constraints).

When composing Arbor Vitae for string quartet, Tenney defined a harmonic

lattice where the vertices represent harmonics of some fundamental and the edges con-

nect harmonics related by one of a set of multiples—3, 5, 7 or 11. Tenney derived pitches

from this lattice by stochastically choosing elements and then (sometimes) walking out-

ward from the fundamental. A detailed description of this process and the statistical

results are outlined in [103] and [83], respectively. Tenney first proposed such lattices

in his essay “John Cage and the Theory of Harmony” [98]. While he does not mention
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Figure 2.7: Harmonic lattice of Arbor Vitae

anything equivalent to global morphological constraints, the edge definitions (a set of

multiples—typically frequency ratios) are essentially local morphological constraints.

Tenney proposes how to “grow” such lattices in “On ‘Crystal Growth’ in Harmonic

Space” [100]
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2.3.2 Explicit Examples

Several artists explicitly make use of structures defined by local and global

morphological constraints. Tom Johnson’s piece, Trio (2005), is a prime example. The

vertices/elements are three-note chords with pitches represented by numbers from 0

to 48, where middle C equals 24. The numbers of each chord are distinct partitions

(without repetitions) of 72. That is, the constituent numerical representation of the

pitches of each chord sum to 72. The edges are induced by the local morphological

constraint that from chord to chord, one pitch must remain the same while the other

pitches move by a semitone in contrary motion. The morphology is a Hamiltonian path;

that is, satisfies the global morphological constraint that each vertex is visited only once.

Fig. 2.8 shows the final morphology with the numeric representation of the chords.

(Note that this graph does not show all the edges satisfying the local morphological

constraint.) Johnson continues to consider similar ideas to generate music and has

posed yet unsolved problems regarding the Hamiltonicity of other types of graphs in

“Musical Questions for Mathematicians” [67].

Another example comes from the playwright Samuel Beckett. For his work

Quad (1981), he wanted all combinations of performers on stage at some point such that

the one that has been on stage the longest will always be the next to exit. This problem

equates to finding a particular type of Gray code (after Frank Gray: an enumeration

of all binary words of a given length such that only one bit flips from word to word,

see [56, 68, 91]) where the bit position with the currently longest ‘on’ run will always

be the next position to flip ‘off.’ Both local and global morphological constraints are
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Figure 2.8: Trio graph (from cover of score)

26



0123456070121324356576071021353462670153741236256701731426206570
1342146560573102464537571020435376140736304642737035640271327505
4121027564150240365425013602541615604312576032572043157624321760
4520417516354767035647570625437242132624161523417514367143164314

Figure 2.9: The canonical transition sequence for an 8-bit Beckett-Gray code

well defined and easily expressible in mathematical terms. The local morphological

constraint is that one bit flips between each two binary words. The global morphological

constraints are that each binary word is visited only once and the current bit position

with the longest ‘on’ run is the next to flip ‘off.’ For binary words of 3 and 4 bits,

a Beckett-Gray code is impossible (a prime example of local and global morphological

constraints conflicting) thus Beckett was unable to implement his original idea. Recently,

Brett Stevens, et al. have shown that such Beckett-Gray codes exist for binary words

up to 8 bits (excluding 3 and 4) and have provided an example of an 8-bit Beckett-Gray

code [96]. Fig. 2.9 shows the aforementioned Beckett-Gray code’s canonical transition

sequence, which is an enumeration of the bit position in each word where the bit flip

occurs.

2.4 A Few More Thoughts on Structure

Note that the definitions above are similar to graph and path representations of

Markov processes and chains (see [92]), which are akin to finite state machines, which are

essential to Turing machines. This illustrates that many structural encodings are valid

and highly related. (For more on general graph, information theory, and algorithmic

information theory, see [36], [93] and [29], respectively.) While each encoding is valid,
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they all have limits when used to compare structures. Again, this text is essentially an

epistemology of structural metrics.
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Chapter 3

Metrics

3.1 Mathematical Definition

A metric is a means of determining similarity of objects using a distance func-

tion. Mathematically, it is a real-numbered function on a set S in the form d(a, b) such

that for any a, b, c ∈ S, the following conditions are satisfied:

1. d(a, b) = 0 if and only if a = b (identity)

2. d(a, b) = d(b, a) (symmetry)

3. d(a, b) ≥ 0 (non-negativity)

4. d(a, b) ≤ d(a, c) + d(c, b) (triangle inequality)

Identity provides a standard of invariance. That is, the distance function

equals 0 if the two elements being compared are evaluated as the same by the function.

Symmetry and non-negativity state that order of comparison does not matter and the
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result of the distance functions must always be positive, respectively. Take the natural

numbers 1 and 3. If d(a, b) = |a − b|, then d(1, 3) and d(3, 1) both equal 2. Order

does not matter and they are both positive. Triangle inequality states that the distance

between a and b is at most the sum of the distance from a to c and c to b in a metric

space, which is a set of objects being compared with a defined distance function. For

our purposes, the objects will be representations of various structures. Note that the

criteria for a metric can be relaxed. For example, a quasimetric satisfies all criteria

except for symmetry. This can be useful in certain situations such as when the distance

in one direction incurs an obstacle that is not present in the opposite direction (e.g.

a quasimetric that calculates distance based on the amount of energy to get from one

point to another will be different when going uphill as opposed to downhill). For more

on metrics and metric spaces see [44, 97, 4].

3.2 Examples of Metrics

3.2.1 The Euclidean and Taxicab Metrics

The Euclidean and taxicab metrics are well known metrics where if a =

(a1, a2, . . . , an) and b = (b1, b2, . . . , bn) are two points in a Euclidean n-space, then

the distance between a and b are respectively:

d(a, b) =
√

(a1 − b1)2 + (a2 − b2)2 + . . . + (an − bn)2 (Euclidean)

d(a, b) = |a1 − b1| + |a2 − b2| + . . . + |an − bn| (taxicab)
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Figure 3.1: An illustration comparing the Euclidean and taxicab metrics

To show that metrics can vary considerably, note that relative to each other:

√
(a1 − b1)2 + (a2 − b2)2 + . . . + (an − bn)2 ≤ |a1 − b1| + |a2 − b2| + . . . + |an − bn|

3.2.2 Harmonic Distance

Several composers and music theorists have been interested in determining

harmonic distance between two frequencies. We review three examples of harmonic

distance functions by Leonard Euler [49], Clarence Barlow [15] and James Tenney [98],

respectively. The first, Euler’s Gradus Suavitatis (GS) function, is a function deter-

mining integer complexity for a single value and harmonic distance when taken on the

least common multiple of two values. The second harmonic distance function, defined

by Barlow, is similar to Euler’s GS in that first a calculation is made on a single value

(called ‘Indigestability’) and then input into a distance function (called ‘Harmonicity’).

Note that Barlow’s function is actually not a true metric since intervals that go up are
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positive and down are negative. It can be turned into a proper metric by taking the

absolute value of Harmonicity. The third metric, defined by Tenney, is perhaps the

simplest. It takes the sum of the log values of the numerator and denominator of a

given frequency ratio (in its simplified form). All three yield rather similar results and

are essentially based on the complexity of the numbers in the frequencies ratio of two

tones.

GS(a, b) = GS(ab)

where GS(n) = 1 +
k∑

i=1

vi(pi − 1)

for all prime factors of n such that n = pv1
1 pv2

2 . . . pvk
k (Euler’s GS)

H(a, b) =
sgn(I(a) − I(b))

I(a) + I(b)

where I(n) =
k∑

i=1

vi
2(pi − 1)2

pi

for all prime factors of n such that n = pv1
1 pv2

2 . . . pvk
k (Barlow’s Harmonicity)

HD(a, b) = log
a

gcd(a, b)
+ log

b

gcd(a, b)
(Tenney’s Harmonic Distance)

3.2.3 Morphological Metrics

In “Morphological Metrics” [82], Polansky outlines ways to compare shapes

and presents eight types of metrics that each have variants (see Table 3.1). His metrics

compare “intervals” within each morphology being analyzed. An interval is a difference
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Magnitude Metrics Direction Metrics
Linear Combinatorial Linear Combinatorial

ordered OLM OCM OLD OCD
unordered ULM UCM ULD UCD

Table 3.1: The categories of Polansky’s morphological metrics

between any two elements. The two broadest categories of Polansky’s metrics are di-

rection and magnitude metrics. The former compares general contour (up/down/same-

ness) between two morphologies and the latter, intervallic magnitude. Another distinc-

tion is linear and combinatorial. A linear morphological metric only compares intervals

of adjacent elements within each morphology. A combinatorial morphological metric

compares intervals between all elements within each morphology. The final distinction

is ordered versus unordered which determines whether or not intervals between two mor-

phologies correspond. Polansky’s unordered, combinatorial metrics and multi-metrics

(that combine linear and combinatorial metrics) actually approach structural metrics

because they compare statistical properties of all intervals between two morphologies.

Provided below are his general definitions of the four direction metrics for morphologies

of the same length. ∆(x, y) determines interval and denotes any function measuring a

difference between two elements x, y ∈ M and ρ(x, y) =

{
0 if x = y

1 if x ̸= y
is the discrete

metric between any two values. See Polansky’s paper for variants of these metrics, ways

to account for morphologies of different lengths and definitions of the magnitude metrics

not provided here.
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ULD(M,N) =

1
2(L − 1)

∑
v=(−1,0,1)

∣∣∣∣∣
L−1∑
i=1

L − 1 − ρ(sgn(∆(Mi,Mi+1)), v)

−
L−1∑
i=1

L − 1 − ρ(sgn(∆(Ni, Ni+1)), v)

∣∣∣∣∣

UCD(M, N) =

1
2(L − 1)

∑
v=(−1,0,1)

∣∣∣∣∣
L−1∑
i=1

L∑
j=i+1

L − 1 − ρ(sgn(∆(Mi,Mj)), v)

−
L−1∑
i=1

L∑
j=i+1

L − 1 − ρ(sgn(∆(Ni, Nj)), v)

∣∣∣∣∣

OLD(M, N) =
1

L − 1

L−1∑
i=1

ρ(sgn(∆(Mi,Mi+1)), sgn(∆(Ni, Ni+1))

OCD(M,N) =
1(

L+1
2

) L−1∑
i=1

L∑
j=i+1

ρ(sgn(∆(Mi, Mj)), sgn(∆(Ni, Nj))

3.2.4 Information-Based Metrics

The Hamming and Damerau-Levenshtein distances are two information-based

metrics that warrant mention. The reader’s knowledge of these will be useful for the

structural metrics and structural mutations discussed later. The Hamming distance is
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defined as the number of corresponding positions that differ between two strings of equal

length [57]. For example, the Hamming distance between “1011010” and “0111011”

is 3 (bold denotes the differing positions). The Damerau-Levenshtein distance is a

metric between two strings defined by the number of operations needed to mutate from

one string into another. The operations can be insertion, deletion, substitution and

transposition of characters [42, 73]. For example, the Damerau-Levenshtein distance

between “written” and “fitting” is 4:

1. written → ritten (delete ‘w’)

2. ritten → fitten (substitute ‘f’ for ‘r’)

3. fitten → fittin (substitute ‘e’ for ‘i’)

4. fittin → fitting (insert ‘g’ at the end)
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Chapter 4

Structural Metrics

4.1 The Tradeoff: Objectivity for Practicality

In this chapter, we investigate three structural metrics ordered with respect

to practicality of implementation starting with the least practical. The first structural

metric we define is based on minimal program sizes. The second metric is based on the

distribution of substrings in given morphologies and will be shown to be less discrimi-

nating than the program-size metric. The third metric compares graph representations

of structures. Such an ordering reveals what seems to be a fundamental trade-off when

analyzing structure; that is, objectivity versus practicality. More objective metrics are

less practical to implement as will be shown clearly with the program-size based met-

ric. There exists a spectrum of practicality that ranges from comparing the minimal

programs that generate the objects under investigation to less compressed structural

encodings where it may be difficult to determine the efficacy of compression with re-

spect to maximal compression (such as graph-based structural metrics as opposed to
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the minimal program-size based metric). Note that all metrics should be similar when

comparing truly unstructured objects since all compression schemes will be equally in-

effective. In these cases, the minimal program for a such an object simply prints each

bit of the morphology one by one. While most arbitrary strings display this property,

music, on the other hand, is often highly organized and thus finding structural encodings

that approach minimal programs is ideal.

To reiterate from earlier in the text, this survey is for epistemological purposes

only. What started out as a goal to provide objective, practical structural metrics and

their applications turned into the goal of understanding why a truly objective, practical

structural metric is essentially impossible. While some of the more practical structural

metrics provided here may in fact prove very useful, implementations of the metrics have

been omitted as they are not necessary to show the fundamental tradeoff of objectivity

for practicality and to remain focussed on epistemology as opposed to utility.

As will be shown in the following chapter, a structural metric can be used as

a fitness test for structural evolutions. Therefore, these studies extend to fields such

as cognition and evolutionary biology and physics, where structural metrics are already

being investigated [80, 52].

4.2 Mutual Information

One important idea for metrics briefly mentioned in the first chapter but ex-

cluded from the the previous chapter is mutual information. The mutual information

of two objects is the amount of information they share in common, usually expressed in
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bits. Shannon and Weaver first introduced this idea as a function of entropy [93], but

calculating mutual information extends to other techniques as shown in the following

sections.

Note that mutual information is actually not a metric. Similar objects have

large amounts of mutual information. On the other hand, a metric expresses increasing

similarity by smaller and smaller values. The following examples detail how one can use

mutual information to calculate metrics.

4.3 The Most Objective Metric: Mutual Information of

Minimal Programs

Chaitin applies the idea of mutual information to program-size complexity [27].

He defines mutual information in the theory of program-size complexity as the minimal

amount of information needed to compute two objects separately minus the minimal

amount of information needed to compute them together. If it takes about the same

amount of information to compute the objects together as the sum of the information

needed to compute them separately, then the two objects have a small amount of mutual

information.

Chaitin defines the program-size complexity of a string or duple of strings as the

minimal program needed to compute the string or duple of strings on a universal (self-

delimiting) Turing machine started with a blank program tape expressed respectively

as:
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H(s) = min|p|(U(p, Λ) = s) (single string)

H(s, t) = min|p|(U(p, Λ) = (s, t)) (duple of strings)

The resulting definition of mutual information is:

I(s : t) = H(s) + H(t) − H(s, t) + O(1)

O(1) denotes a function with an absolute value less than or equal to c for all values

of its arguments. c essentially represents the number of bits for the set of simulators

that enables a universal Turing machine to simulate all other (non-universal) Turing

machines as an unspecified constant. Chaitin also shows that:

H(s) = − log2 P (s) + O(1)

H(s, t) = H(s) + H(t/s) + O(1)

H(t/s) = log2

P (s)
P (s, t)

+ O(1)

P (s) =
∑

2−|p|(U(p, Λ) = s) and P (s, t) =
∑

2−|p|(U(p, Λ) = (s, t)) are the probabil-

ities that a computer program generated by the toss of a fair coin will halt and output

the string (or strings) on a universal (self-delimiting) Turing machine started with a

blank program tape. H(t/s) is the relative complexity of t given s expressed as the size

of the minimal program to compute t if one is given the minimal program to compute

s. Therefore:

H(s, t) = − log2 P (s, t) + O(1)

I(s : t) = log2

P (s, t)
P (s)P (t)

+ O(1)
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As mentioned in the previous section, mutual information is not a metric but

can easily be used for one. Simply take the joint complexity minus the mutual informa-

tion:

D(s, t) = H(s, t) − I(s : t) + O(1)

= − log2

P (s)P (t)
P (s, t)2

+ O(1)

However, because computing whether or not random programs halt is impossi-

ble, P (s) and P (s, t) are incomputable; therefore, H(s), H(s, t), I(s : t) and D(s, t) are

also incomputable. One can approach the upper bound of D(s, t) by approaching lower

bounds on P (s) and P (s, t), and indirectly, H(s), H(s, t), and I(s : t). The process is

rather simple and goes as follows. Given some time d, generate and run all programs

of size less than or equal to d (there are 2d many of these programs). After time d,

check to see how many programs have halted and output s (or (s, t)). Any programs

that have not halted or halted with a different output by time d are considered fail-

ures. The number of successes divided by 2d approximates P (s) (or P (s, t)). Chaitin

has shown the same results in his book, Exploring Randomness [32]. He expresses the

metric differently:

D(s, t) = H(s/t) + H(t/s) + O(1)
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Chaitin uses relative complexities in his expression but this is equivalent to the definition

above that uses probabilities:

D(s, t) = H(s/t) + H(t/s) + O(1)

= 2H(s, t) − H(s) − H(t) + O(1)

= H(s) + H(t) − 2I(s : t) + O(1)

= H(s, t) − I(s : t) + O(1)

= − log2

P (s)P (t)
P (s, t)2

+ O(1)

Note that in the expression of D(s, t) that uses probabilities, the calculation contains

a divisor and thus (most likely) does not monotonically decrease, which results in local

minima. That is, the metric does not get more and more accurate as d gets larger.

Chaitin and I have discussed these results and he has proposed altering the metric

above to produce a quasi-metric that is monotonic as d gets larger. This is achieved by

using a variant definition of relative complexity where H(s/t) is the minimal program

to compute s if one is given t directly as opposed to the ‘official’ algorithmic information

theory version where H(s/t) is the size of the minimal program to compute s if one is

given the minimal program to compute t.

Regardless, finding minimal programs is a huge software space to traverse and

rather unfeasible. As computer speeds and memory increase, it is conceivable to let

such a program run in the background calculating distance with great precision over

time for a very usable structural metric.

41



4.4 Normality: A Metric that Accounts for the Distribu-

tion of Substrings.

A b-normal number is a real number with digits that are uniformly distributed

in base b. Numbers are absolutely normal if the number is normal in every base. For the

most part, normal numbers appear to be quite random. It seems that there are many

computable numbers like π and e that are normal. While there have been no proofs

that π and e are normal, Verónica Becher and Santiago Figueira show an example of

a computable absolutely normal number in “An Example of a Computable Absolutely

Normal Number” [17].

In music and many real-world objects, patterns often exist. Each substring

does not occur with equal frequency. A structural metric that accounts for the distri-

bution of substrings seems to be a good compromise for musical purposes. According

to program-size complexity, digital expansions of numbers like π and e are very sim-

ple. A small program computes their respective digital expansions even though these

numbers seem very random on the surface and are possibly absolutely normal. This

is also the case with chaotic random number generators in most computer languages.

The programs to generate them are rather small, but are so chaotic that it would take

a very long time to notice any repetition. By the strict definition above, numbers are

either normal or not. For our purposes, we should think of normality as a spectrum.

Our ‘normality tests’ will determine where on this spectrum a sequence lies as opposed

to whether or not a number is strictly normal. Strings with a distribution of substrings

that approach the equal distribution of normal numbers seem more random. Such a
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metric will still show similarity between two objects computed by minimal program

of different sizes even if the object with the smaller minimal program is actually just

chaotic.

The mathematical definition of an infinite normal string S∞ is:

lim
n→∞

N(S, n)
n

=
1
bk

for all S where N(S, n) is the number of times the finite string S in base b occurs in the

first n digits of S∞. For an absolutely normal number this is the case for all b.

Before moving on, it is necessary to spell out a few definitions in Shannon

information theory. Shannon entropy for a string S is defined as:

H(S) = −
∑
s∈S

p(s) logb p(s)

where p(s) is the probability that the character s occurs in S. Mutual information in

Shannon information theory is defined differently than in Chaitin’s theory of program-

size complexity:

I(S : T ) = −
∑
s∈S

∑
t∈T

p(s, t) logb

p(s, t)
p(s)p(t)

where p(s, t) is the probability that s occurs in S and t occurs in T at the same time.

The entropy of the sequence of digits for a b-normal number is 1, but that

does not really tell us much. For example, the string “10101010101010” has an entropy

of 1 but is obviously very structured. If one examines the next hierarchical level by

considering that the string was output by a 1st order Markov source, then the string

has 0 entropy. A much more important quality about a normal number is that the

entropy rate on all hierarchical levels from 0 to ∞ (considering it as a Markov source
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of order 1,2,...,∞) is also 1. At each hierarchical level, a normal number has maximal

entropy. Shannon shows the entropy rate Hn(S) of a Markov source of order n is as

follows:

H0(S) = −
∑
i∈S

p(i) logb p(i)

H1(S) = −
∑
i∈S

p(i)
∑
j∈S

pi(j) logb pi(j)

...

Hn(S) = −
∑
i∈S

p(i)
∑
j∈S

pi(j) . . .
∑
y∈S

pi,j,...,y(z) logb pi,j,...,y(z)

where pi,j,...,y(z) is the probability that z occurs given the ordered set {i, j . . . , y} ∈ S as

previous characters. For a normal number,
∞∑

n=0

Hn(S) diverges linearly as n approaches

∞. It is completely ergodic across all hierarchical levels.

Now we extend this principle to mutual information of two finite strings. Re-

lated methods have been produced by Dieter Arnold et al. [12], Andrea Goldsmith and

Pravin Varaiya [51] as well as Tim Holliday et al. [58]. Two independent normal num-

bers should have no mutual information on all hierarchical levels. For now, we assume

the strings have the same length. First, we derive the joint entropy rates, Hn(S, T ), and

mutual information, In(S : T ), of hierarchical level n as follows:
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H0(S, T ) = −
∑
i∈S

∑
j∈T

p(i, j) logb p(i, j)

H1(S, T ) = −
∑
i∈S

∑
j∈T

p(i, j)
∑
k∈S

∑
l∈T

p(i,j)(k, l) logb p(i,j)(k, l)

...

Hn(S, T ) = −
∑
i∈S

∑
j∈T

p(i, j)
∑
k∈S

∑
l∈T

p(i,j)(k, l) . . .

∑
y∈S

∑
z∈T

p(i,j),(k,l),...,(w,x)(y, z) logb p(i,j),(k,l),...,(w,x)(y, z)

and

I0(S : T ) = −
∑
i∈S

∑
j∈T

p(i, j) logb

p(i, j)
p(i)p(j)

I1(S : T ) = −
∑
i∈S

∑
j∈T

p(i, j)
∑
k∈S

∑
l∈T

p(i,j)(k, l) logb

p(i,j)(k, l)
p(i,j)(k)p(i,j)(l)

...

In(S : T ) = −
∑
i∈S

∑
j∈T

p(i, j)
∑
k∈S

∑
l∈T

p(i,j)(k, l) . . .

∑
y∈S

∑
z∈T

p(i,j),(k,l),...,(w,x)(y, z) logb

p(i,j),(k,l),...,(w,x)(y, z)
p(i,j),(k,l),...,(w,x)(y)p(i,j),(k,l),...,(w,x)(z)

where p(i,j),(k,l),...,(w,x)(y, z) is the probability that y occurs in S and z occurs at the

same time in T given the ordered sets {i, k, . . . , w} ∈ S and {j, l, . . . , x} ∈ T as previous

characters in each, respectively. n goes from 0 to the length of the strings.

A structural metric, Dn(S, T ), can be constructed for each hierarchical level:

Dn(S, T ) = Hn(S, T ) − In(S : T )
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A more global structural metrics results from taking the average of several or all hier-

archical levels up to the length of the strings:

D(S, T ) =
Di(S, T ) + Dj(S, T ) + . . . + Dn(S, T )

l

where {i, j, . . . , n} is some subset (of size l) of all hierarchical levels up to the length

of the string. (Certainly there are methods other than the averaging one given above.)

Also, the various hierarchical levels can be weighted such that:

D(S, T ) =
Di(S, T )(wi) + Dj(S, T )(wj) + . . . + Dn(S, T )(wn)

l

where {wi, wj , . . . , wn} is a vector of weights for the chosen hierarchical levels.

Now we must consider strings of different lengths. Note that the following

proposed method also works on strings of the same length and may even provide a better

solution. The method goes as follows. For each hierarchical level up to the length of

the shorter string, perform a Markov analysis (of order equal to the hierarchical level)

on the two strings. Then, generate Markov chains of the same length (the longer the

chains, the better) from the respective transition probabilities. So if S∗
z and T ∗

z are

Markov chains constructed from the transition probabilities of S and T , respectively;

as the chains grow larger, they should more accurately approach the marginal and joint

distributions of the original strings. Mutual Information on any hierarchical level larger

than the length of the shorter input string and less than or equal to the length of the

longer input string will clearly be 0. For chosen hierarchical levels in this range, we just

need to sum the respective entropy rates of the larger string (or Markov derived string)

at those levels. If S is the longer string, then the metric is:
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D(S, T ) =

Di(S∗
i , T ∗

i ) + Dj(S∗
j , T ∗

j ) + . . . + Dn(S∗
n, T ∗

n) + Hu(S∗
u) + Hv(S∗

v) + . . . + Hz(S∗
z )

l

where {i, j, . . . , n} is some subset of hierarchical levels up to the length of T and

{u, v, . . . , z} is some subset of hierarchical levels greater than the length of T and less

than or equal to the length S. In this case, l is the size of the combined aforementioned

sets. Also, weightings are still applicable.

This metric is quite objective. It will not show structural similarities to the

depth of the metric based on program-size complexity, but it may better reflect how we

perceive order as humans. Also, the length in time of the procedure, while still possibly

very time consuming, is bounded by the length of the strings or the length we grow

the derived Markov chains (granting that the longer we grow them, the more accurate

the result such that eventually the increase in accuracy will be negligible unlike the

program-size complexity model).

4.5 Graph Comparison

4.5.1 The Leap Into the Truly Subjective

The past two methods of structural comparison are quite objective. The first

examines small computer programs that output given objects (which is essentially an

investigation into maximal compression). The second investigates entropy-based calcu-

lations on given strings. Now we look at representations of structure using graphs. It

was shown in the second chapter that graphs can suitably represent local and global
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morphological constraints. One can name relationships, look for occurrences in the ob-

ject of the named relationship and then derive an appropriate graph. This is the point

where subjectivity enters the scene. Defining a relationship can be quite arbitrary.

What is important (as mentioned earlier) is that the chosen relationships should avoid

complete spuriousness. Any two elements can be deemed related by just saying so, but

for musical (or most) purposes it seems logical that one deem two elements related if

our observations suggest so. It is with this method that we clearly extend from the

domain of the objective into the realm of subjectivity. We must start relying on what

many musicians already rely on: intuition.

We must trust that those doing the analysis have defined relationships that

many will find meaningful or cogent. Here we encounter the most crucial problem

with several methods of musical analysis to date: there is no consensus on a set of

meaningful relationships in music. The definition of a meaningful relationship is entirely

subjective and differs from person to person. The methods in the previous sections avert

this problem by a comprehensive approach. For example, the minimal program that

generates an object is completely oblivious to its task but still performs the necessary

calculations for a given computation. For methods based on graph theory, we must

assume that a set of proper relationships have been determined. We must ultimately

trust our (or others’) intuitions in the initial step of the process—the derivation of the

graph that represents a given object’s structure.
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4.5.2 Extensions

The following metrics based on graph theory extend to a wide variety of ap-

plications such as circuit and computer program optimization as well as large network

analysis. For example, the World Wide Web is essentially a large network. Web pages

and corresponding links are a structure where pages are structural elements and links

are edges. These studies on scale-free and small-world networks have provided valu-

able results in the understanding of complex networks with applications that extend

to situations such as mass transit and genomic biology (for examples, see [3]). Server-

to-server propagation is another example where servers are structural elements and

server-to-server connections are edges. Graph metrics have already been implemented

to research computer program efficiency [79, 89, 90]. In these studies, graphs represent

programs. The elements are the classes and edges are method calls from one class to

another. Such metrics can be applied to boolean circuits as well. Note that if one

knows the boolean circuit for a given musical output, the following methods may be

implemented in a more objective fashion.

4.5.3 Graph Representations and Correlate Metrics

Since this is not a dissertation on innate perception and cognition of music, we

must continue assuming the viability of the derived graphs that represent the structures

of the objects under investigation. We will focus on three fundamental representations

of graphs for calculating corresponding metrics: the degree set, the adjacency matrix

and the distance matrix.
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For a graph G with vertex set V (G) = {v1, v2, . . . , vn} and edge set E(G) =

{e1, e2, . . . , em}, the degree set of a graph D(G) = {d1, d2, . . . , dn} is the number of

incident edges to each vertex v1, v2, . . . , vn.

Continuing, the adjacency matrix is an n × n matrix A(G) = [aij ], where:

aij =

{
1 if vivj ∈ E(G)
0 if vivj /∈ E(G)

The distance matrix is highly related to the adjacency matrix. It does not

simply show if two vertices are connected, rather it shows the ‘cost’ of getting from

one vertex to another. It is is an n × n matrix C(G) = [cij ], where cij is the geodesic

distance between the two vertices, which is the number of edges crossed on the shortest

path between two vertices.

Again, note the similarity between our various representations and subsequent

metrics: an adjacency matrix convolved with a set of probabilities is the same as the

transition matrix for a Markov process. Also, a graph can represent a finite state

machine which is at the heart of all Turing machines. There is no doubt that all the

metrics in this chapter are highly related.

For a reasonable structural metric that uses any of the graph representations,

the metrics should somehow show graph invariances and isomorphisms of subgraphs.

Subgraph matching is a long studied problem in graph theory literature. It is known

to be an np-complete problem, which is a type of problem that can be verified in

polynomial time, but seems unlikely to be solvable in polynomial time (a proof has yet

to be produced and there is an acclaimed prize in mathematics for one) [37]. We will not

concern ourselves with the efficiency of such an algorithm. No matter what, matching
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subgraphs can be found in some (possibly long) amount of time (unlike in program-size

complexity where there is no algorithm to find a minimal program with utter certainty).

A few metrics will be illustrated, but certainly many more can be derived. First, we

discuss metrics on structures with the same amount of structural elements (or vertices).

The following metric can be used for any of the matrix representations:

D(G1, G2) =
k!

min
k=1


n∑

i=1

n∑
j=1

d(Xij , (P−1
k (Y Pk))ij)

s


where d(Xij , (P−1

k (Y Pk))ij) is a distance function on the corresponding indices of the

matrices; for example,
∣∣d(Xij − (P−1

k (Y Pk))ij

∣∣. {P1, P2, . . . , Pn!} is the set of all n × n

row-column permuted matrices, and s is some scaling factor (for comparing adjacency

matrices, if s = n2 then the metric should fall between 0 and 1). Permuting one of the

matrices is necessary in order to find the most similar correspondence between vertices

of the two graphs. Furthermore, the matrices can be weighted by multiplying each of

them with a weightings matrix.

The degree set expresses a morphology of vertex connectivity. Technically,

any of the metrics in the prior sections can be used for comparing degree sequences. I

believe calculating the entropy of degree sequences is similar to what Tenney refers to

as “structural entropy” at the end of META Meta + Hodos. At the time he wrote it, he

pointed out that “nothing is known about structural entropies” [99]. Furthermore, any

of the matrix representations can have the rows concatenated into a single string (or

successive tuples of strings) and then be subject to the prior methods. Or, both distance

and adjacency matrices (as well as ones that are multiplied with a set of weightings)
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can be used as transition tables for Markov chains. Strings can be generated from these

converted matrices and then subjected to the metrics in the prior sections.

To analyze graphs with different amounts of vertices, we must pad the smaller

graph by adding a set of unconnected vertices. For the adjacency matrix, this simply

means padding the smaller matrix with zeroes until it is the same size as the larger

matrix. For the distance matrix, the smaller matrix must be padded with some high

constant since a disconnected vertex technically is infinitely distant to all other vertices.

Finally, for the degree set, the smaller set can be padded with zeroes until it is the same

size of the larger set because a disconnected vertex has no incident edges.

Clearly, metrics greatly depend on how the objects are encoded. This will be

discussed in even more detail later. For now, it should start to become clear that there is

a fundamental difference of subjectively naming perceived relationships of an object as

opposed to comprehensive analyzing a complete representations of the objects (such as

finding the minimal programs for lists of objective characteristics like amplitude values

of a sound file).

4.6 A Few More Well-Studied Ideas:

Compression Schemes, Cross Correlation and Some

Others

There are a few other techniques useful for structural metrics including com-

pression schemes and cross-correlation. Our program-size complexity model strives for

minimal programs, but certainly there are several (although perhaps less ideal) com-
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pression schemes that are very practical and extensively in use. If |C(M)| is the size

of a morphology after submission through some compression scheme, then a metric (for

any compression scheme) can be derived:

D(M,N) = |N | + |M | − |C(N)| + |C(M)| − |C(M,N)|

|C(N)|+ |C(M)|−|C(M,N)| is a type of mutual information on two morphologies given

an arbitrary compression scheme and |N | + |M | is the total length of the combined

strings.

Cross-correlation is defined as the correlation of one morphology at the delay

of another:

R(M, N) =
n∑

i=1

(Mi − µ(M))(Ni−d − µ(N))

where µ(M) is the mean of a given morphology of length n and d is some delay of

elements. To turn this into a metric, one can sum the inverses of all correlations at

delay d less than n. Correlating a morphology with itself has long been used in the

Fourier analysis of sound signals to go from the time domain of a signal to the frequency

domain. This perhaps suggests that cross-correlation of two signals (as opposed to

autocorrelation) might provide a very suitable structural metric. (For more on Fourier

analysis and cross-correlation see [19, 20, 87].)

As mentioned previously, some of Polansky’s morphological metrics seem to

approach structural metrics. Also, the metrics provided at the end of the third chapter

(especially the Damerau-Levenshtein distance) might be very suitable structural metrics

in certain cases.
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4.7 Perhaps a Few Tricks for Analyzing Music

Until now, there has been little to no discussion on exactly what we are compar-

ing apart from morphologies possibly expressed as bit strings. This is a very ‘low-level’

approach. For music, there are several ways to compare musical morphologies. What

is most important is that the information is objective. For example, one can compare

amplitude values of a sound file or lists of attributes of a piece such as frequencies and

durations.

Furthermore, for each structural metric we need to understand the scope of

analysis. Examining minimal programs is ideal because of its comprehensiveness. Lets

take a simple example: a morphology of frequencies that has several repetitions of

frequency ratios (or interval vectors) at different transpositions. A minimal program

will account for that because it will most likely run a ‘transpose’ subroutine that takes

any given sequence and shifts it up or down. Our normality test really does not have

that capability when implemented with absolute values. The same sequence transposed

is not identified as the same. However, it would be if the sequence was represented

by relative values (the differences between adjacent elements of a sequence of absolute

values). That way, the absolute values are subordinate to the relativities that make up

the morphology.
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Chapter 5

Structural Mutations

5.1 What is Being Mutated?

A structural mutation is the evolution of an object with a structural metric as

a fitness test. Prior to the epistemological goals that the thesis now addresses, structural

mutations were to be examined for their utility. Now, we study evolutionary methods

(with structural metrics for fitness tests) to show how evolutionary algorithms as are

usually implemented in computer science are far from similar to ‘real-world’ evolution

(for more on general practices of evolutionary algorithms, see [13] and [47]).

Most importantly in the ‘real-world’ of evolutionary biology, mutations occur

to the genome. The computational equivalent is a mutation of the machine-level code

that generates a given object. In such a mutation, there is no way to ensure that the

mutated code will halt. However, one can limit the software space by mutating the

code on a higher level (i.e. not machine code) and embedding rules for mutation that

take into account the grammar and syntax of a language to ensure that mutations will
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not result in computations that loop infinitely and never halt. This essentially limits

the software space and compromises the universality of the search. I maintain that this

latter method, while perhaps useful, does not really explore epistemological limits since

the software space is so greatly restricted. Again, the halting problem propagates itself

in another situation.

In the following three examples, we examine artificial evolutions where the

binary description/morphology is mutated for practicality (that is, on some higher level

than the genome as with most evolutionary algorithms as we know them). Here we must

distinguish between two very different utilities of practical evolutionary algorithms. The

first utility is to induce a controlled morph from one object to the next (displayed by the

first two algorithms below). The third algorithm relaxes control in order to reach the

destination metric as quickly as possible. This is typical in problem-solving evolutionary

algorithms where reaching the target metric equates to a solution of a given problem.

Apart from mutations occurring on the phenotypical level, another reason why the

first two of the following algorithms do not mimic ‘real-world’ evolution is because the

trajectory of the evolution is so rigorously controlled. One fundamental principle of ‘real-

world’ evolution is the occurrence of occasional big jumps in evolutionary progress. The

reason why the third (problem-solving algorithm) does not mimic ‘real-world’ evolution

is because once a solution is found, the algorithm finishes no matter if a better solution

exists. Further optimization requires starting from scratch and losing the history of the

last evolution. In the ‘real-world,’ organisms adapt to more effectively use less genetic

information in order to find better solutions to problems that are already answered.
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In the following chapter, we examine a new mathematical definition of evolu-

tion that maintains real evolutionary principles because of the halting problem. What

has seemed to be a problem all along, the halting problem, may just be the very key

that is needed to establish a proper mathematical definition of evolution.

5.2 Untargeted and Targeted Mutations with Controlled

Trajectories

The primary distinction between types of mutations with controlled trajecto-

ries are untargeted and targeted. An untargeted mutation goes from a source morphol-

ogy to an unknown morphology that has a specified distance (provided by the structural

metric) from the source morphology. A targeted mutation goes from a source morphol-

ogy to a target (or destination) morphology. While the two techniques are similar, the

latter requires a few extra calculations.

5.3 The General Algorithm

5.3.1 Untargeted

1. Define a source morphology.

2. Define a structural metric d(a, b).

3. Define a destination distance that the final mutated morphology must have from

the source morphology.

4. Initialize the evolving morphology to be the same as the source morphology.
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5. Define a function over time that goes from 0 to the destination distance such that

each increment in time provides an ideal distance between the source morphology

and the evolving morphology.

6. Mutate the evolving morphology several times.

7. Keep the mutation that best approximates the current ideal distance between the

source and evolving morphology.

8. Repeat steps 6 and 7 until the final metric defined in step 3 is reached.

5.3.2 Targeted

The primary differences to an untargeted mutation are in steps 1, 3 and 7.

Note that in a targeted mutation, structural metrics invariance must also result in

structural isomorphism. That is, reaching the target metric must ensure reaching the

target object.

1. Define a source and target morphology.

2. Define a structural metric d(a, b).

3. Calculate the distance between the source and target morphology given the defined

structural metric.

4. Initialize the evolving morphology to be the same as the source morphology.

5. Define a function over time that goes from 0 to the destination distance such that

each increment in time gives an ideal distance between the source morphology and

the evolving morphology.

58



6. Mutate the evolving morphology several times.

7. Keep the mutation that best approximates the current ideal distance between the

evolving morphology and both the source and target morphologies.

8. Repeat steps 6 and 7 until the final metric defined in step 3 is reached.

5.4 Closer to Life: Problem Solving Algorithms

This method abandons overall control of the trajectory of a mutation in favor

of reaching the target metric as quickly as possible. The following algorithm omits step

5 from the previous versions and alters the remaining steps:

1. Define a source morphology.

2. Define a structural metric d(a, b).

3. Define a destination distance that the final mutated morphology must have from

the source morphology.

4. Initialize the evolving morphology to be the same as the source morphology.

5. Mutate the evolving morphology several times.

6. Keep the mutation that makes the largest leap towards the destination distance.

7. Repeat steps 6 and 7 until the final metric defined in step 3 is reached.
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5.5 A Stepping Stone to a Mathematical Model of Evolu-

tion

To reiterate, we presented the aforementioned algorithms to show how they

do not model intrinsic properties of ‘real-world’ evolution. The first two algorithms do

not incur large evolutionary advancements in order to control the trajectory of the mu-

tation while the third algorithm does not optimize the solution once the target metric

is reached. In all three, mutations occur on some higher level than the genome as to

ensure that a mutation does not result in a non-halting program. That is, just as with

the more practical structural metrics, these ‘artificial’ methods abandon fundamental

principles of evolution for utility. In the next chapter, we abandon the notion of prac-

ticality to define a new mathematical model of evolution that maintains properties of

‘real-world’ evolution.
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Chapter 6

Conclusion

6.1 Recasting a Mathematical Definition of Evolution

6.1.1 Examining Metabiology

In the previous chapter, mutations based on structural analysis were formu-

lated in such a way that one can ensure that a mutation does not result in a non-halting

program. But what about a computational model of evolution that is in keeping with

observations in evolutionary biology and physics? There has been significant work in

mathematical definitions of evolution for the past century. Chaitin himself started writ-

ing about such models as far back as 1970 and the theories of digital philosophy and

physics also promote such computational models [26, 28].

Chaitin’s most recent work returns to the intersection of mathematics and

biology [34, 35]. He has dubbed the field “metabiology” and relates this work to the

philosophical ideas of “the search for the perfect language” after Umberto Eco’s book

of the same title [46]. In short, the perfect language expresses concepts as simply
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as possible. After examining Chaitin’s current mathematical definition of evolution,

I present a modified theory that, in no uncertain terms, is a search for the perfect

language.

To start, we examine four integral features of ‘real-world’ evolution:

1. Organisms have a code such as DNA that contains a smaller amount of information

than the organism itself. This code is the program that generates the object.

2. Systems have a tendency to grow more complex over time. For example, single-

cell organisms develop into multicellular organisms however the increase in genetic

material is rather small (also see below about genetic maintenance of history).

3. As something evolves, there tend to be occasional big jumps in evolution.

4. Phylogeny recapitulates ontogeny. While this general notion first outlined by

Ernest Henkel (see [54]) is discredited, the development of something (like an

organism) does seem to maintain aspects of its evolutionary history. Genomes

become more efficient over time. Evolved species can do more with small amounts

of DNA. For example, the human genome is much smaller than scientists originally

expected [60]. The genomes of evolved species are not significantly larger than the

genomes of primitive species (take humans in comparison to roundworms). Part

of this efficiency seems to be a result of an encoding of an organism’s evolutionary

history. For example, humans have a proclivity to talk. A child can learn a

language that has taken ages to develop in the matter of a few years. This suggests

that these advancements are ‘hard-coded’ in the genome and not relearned from

scratch thus expediting the process of learning language. The immediate result
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is that genomes maintain certain aspects of the organisms history even if they do

not obviously recapitulate their own evolution.

Chaitin’s mathematical definition of evolution is beautifully simple. His model

derives from Darwinian evolution of species. In the theory, the population comprises

mutating software organisms that compute positive integers. The fitness test of an

organism is the size of the integer it computes—the bigger the better [30]. More formally,

Chaitin is searching a software space to find particular types of Turing machines that

output large numbers (such machines are known as “busy beavers,” a name applied by

Tibor Radó [85]). There is no algorithm that will compute the output of such Turing

machines and thus the problem of identifying such machines is equivalent to the halting

problem .

Chaitin’s model reflects the first three of four features above. The size of the

integer that the software produces will grow much faster than the size of the computer

program. Also, a change of a single bit in a computer program can cause a drastic

change in output (big evolutionary jumps). As yet, Chaitin cannot show that his the-

ory demonstrates the last of the four features in that the evolving code does not seem

to contain its own history. He can show that evolution is progressing, but has to start

the process over again and again if necessary (that is, the process is not cumulative).

Furthermore, there is another obstacle. Non-halting programs are by definition maxi-

mally unfit. Here again, the halting problem has propagated itself. How does one avoid

mutating to a program that does not halt? Chaitin’s current theory suggests consulting

an oracle that knows whether a given program will halt (which kind of suggests a di-
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vine power). In the following section, I propose a theory in which a software organism

maintains its history such that the halting problem is the reason why there are big

evolutionary jumps.

6.1.2 Growing an Oracle: A New Mathematical Theory of Evolution

Again, Chaitin’s model requires the consultation of an oracle that knows

whether a program halts. In the following theory, a particular type of oracle is ‘grown.’

What do I mean by this? First, we return to the concept of the perfect language. Sim-

ply put, the perfect language is a language that can do everything with the smallest

amount of information possible. More simply put, the perfect language is an oracle of

all elegant programs. It is actually rather easy to grow such an oracle by extending

Chaitin’s program that approximates the probability that a random computer program

will halt. This model, presented in the following points, is ultimately the culmination of

my research in that it was completely engendered by the exploration of the epistemology

of structural metrics.

• The fitness test: create an organisms that can do more with less. An organism’s

genotype is a list of halting programs. At first, the organism can do nothing as it

is an empty list of programs.

• Search the software space to find programs that halt. (I believe the search could

be a random walk or a systematic.)

• Let each mutant program run indefinitely.
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• For each mutant program that halts, run all programs in the list (that is, in the

organism’s code).

• If the mutant program that halts is smaller than and produces the same output

as a program already in the list, then replace the the existing program with the

mutant one. (That way the organism’s genotype gets leaner while maintaining its

history but more efficiently over time.)

• If the new program produces a unique output, then just add it to the list. (This

mimics the progression from ‘single-celled’ organisms to multi-cellular complexes.)

In this model, as time goes on, both the genome and the phoneme will grow but

the former will grow at a much slower rate. Complexity will always tend to increase.

Over time, the organism will maintain its history and get more efficient because it

will slowly replace bigger programs with smaller, more elegant ones that do the same

thing (that is, the process is cumulative). Major jumps in evolution occur when a new

program outputs something unique with respect to the list and is then added to the

organism’s genome. Smaller evolutionary progressions will occur when the software

organism becomes leaner as it gets rid of extraneous code. Essentially, the organism

evolves towards a list (or oracle) of all minimal program. The evolution is the search

for the perfect language.

6.2 Important Findings

Our epistemological survey results in two rather important findings.
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• In structural analysis, a fundamental tradeoff of objectivity for practicality exists.

The most objective metric is based on the minimal programs of given objects. A

minimal program is maximally compressed. Due to the halting problem, knowing

the minimal program of a given object is essentially impossible. That is, what

we need to know to objectively measure differences in structure, we cannot know.

All (other) methods of structural analysis that do not use maximally compressed

representations of the objects under examination sacrifice the objectivity of the

analysis. What is perhaps often gained is a practically efficient method.

• A mathematical theory of evolution should take into account the halting problem

as the reason for evolutionary advancement in both minor and major evolutionary

leaps.

These two ideas were completely unknown to me prior to starting. As I pointed

out in the introduction, I began by trying to define objective structural metrics for

practical reasons. As I got more lost in the research, I started to draw more lucid

conclusions about what is possible. I make this point for no other reason than to show

that sometime in order to find what we are looking for, we have to get completely

lost. The notion of the experiment in art is substantially different from the traditional

scientific process. Artists have nothing to prove. We need not make conjectures prior to

embarking on an experiment. This process, while perhaps a bit haphazard, can lead us

into the void and help us uncover truths and beauties that are not yet known. Both the

experimental process in art and science are valid. Perhaps artists and scientists have a

bit more to learn from each other than meets the eye.
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6.3 Future Work and An Open Question

Further work is warranted in the practical application of structural metrics

and mutations. I decided to omit practical examples as they were not needed to draw

our epistemological conclusions and would have unnecessarily lengthened the text.

Included at the end of this text is an appendix that examines works that have

informed and been informed by the research. Almost all of the pieces that implement

graphs in their generation use rather small graphs with few vertices and edges. I have

recently been extending these composition techniques to sonify complex networks much

larger than anything I have tried so far. I hope to continue investigating new ways of

using large-scale networks for generating music.

An open question that came about through my research is whether or not there

exists a proper computational model of art. It is clear that for analytical purposes,

knowing minimal programs that output given objects is ideal. Still, as mentioned in the

beginning of Structural Metrics, art might be best characterized as those programs that

are not efficient or minimal; programs large in size that may run for long amounts of

time (disproportionate to their size) and output less information than is initially input

into the computer. That is, what might characterize art is that each bit of information

of the input actually tells us very little about the output. Of course, this is just one of

many conceivable conjectures.

Curtis Roads suggests that aesthetic discrimination is intrinsic to our ability to

survive and that art is a strategy for tuning our aesthetic discrimination [88]. Essentially,

I agree, but want to further elaborate on the idea. Clearly, as art is ubiquitous in
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human culture, it must exist for a reason. On the other hand, our need for aesthetic

discrimination in order to survive is based on a direct correlation/consequence between

the perceived stimuli and how it might affect us. For example, we need to be able

to distinguish if something tastes foul in order to know that if we eat it, we will get

sick. However, art tunes our aesthetic discrimination in a myriad of (possibly unknown)

ways. I believe finding beauty in anything helps tune our aesthetic discrimination and,

perhaps, this tuning happens just as effectively (if not more) when we are able to find

beauty in the most unlikely of artifacts. Why else would I love Duchamp’s work or

that of the Viennese Actionist’s and still be able to avoid pouring what smells like foul

milk into my bowl of cereal? Art can be upsetting, disturbing, bland, boring, or any

number of (typically negative) qualities yet still be appreciated, loved and admired as

unconventionally beautiful (or perhaps as having a deep beauty as opposed to just a

superficial prettiness). I distinguish very carefully between beauty and prettiness. The

latter is sheer vanity and can be vacant while possibly pleasing. For example, a pretty

person does not necessarily make a beautiful one and the other way around. So is the

same with art.

Still, if art, in an information theory sense, is best characterized by large

programs with long run-times and small outputs, then how is the information of a piece

of art related to our need for it? Christian Calude has shown that such programs

are quite rare in his paper, “Most Programs Stop Quickly or Never Halt” [23]. While

art is ubiquitous, it is still rare. I believe that an interesting next step of research

would be a proper examination of such programs and their epistemological consequence

on artistic practices. Further, perhaps the necessity of art, especially if characterized
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by large programs with long run-times and small outputs, is our ability to discern an

innovative act. In conversation with my friend, composer Laura Steenberge, she made

a very poignant connection regarding this information/program-size based view of art.

In the oracle growing algorithm above, innovation can be characterized as a computer

program that halts on an output that has yet occurred. At that moment, there may

be no understanding of how the program works and if so, we can only appreciate it

as art—for its beauty and innovation—as we may not know what the information of

the program is telling us about regarding anything practical. Over time, we may find

smaller and smaller programs that generate that same output, which might lead to a

better understanding of the output and a resultant loss of novelty. Again, these are

just conjectures made with the hope to stimulate more thought on these rather esoteric

topics.

6.4 A Return to Philosophies on Music: Computation and

Composition

“It doesn’t really matter if the viewer understands the concepts of the artist
by seeing the art. Once it is out of his hand the artist has no control over
the way a viewer will perceive the work. Different people will understand
the same thing in a different way.”

Sol LeWitt from “Paragraphs on Conceptual Art” [74]

6.4.1 Ephemera

While the artist may employ intense logical rigor in conceptions of works,

perceivers may and need not understand the concepts. Music, and art in general, is

transcendent in that way. In the end, the concepts and ideas that may seem so integral
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to the artist are just as ephemeral (with respect to the scope of the work) as any of the

steps in the art making process. LeWitt reifies this by pointing out that “some ideas

are logical in conception and illogical perceptually” [74]. This results directly from the

incalculability of concept-to-percept transparency first introduced in the preface

Still, artists use logic in the end to make art. In “Sentences on Conceptual

Art” [75], LeWitt states that “all ideas are art if they are concerned with art and fall

within the conventions of art.” In this text, mathematical objects are used to represent

structures in art. For a while, math and art are in communication with each other.

This communication is also ephemeral.

So why make art that is informed by other fields at all? In my mind making

art is learning. This learning process is still a means to an end, but the end has little to

no functional purpose other than to introduce into the world an artifact that has not yet

been experienced—no personal gain, just a search for truth and beauty. I suppose truth

is revealed in understanding whether or not something can or cannot exist and beauty

is understood by experience through something that does or does not exist. Much of

this text is based on what is computable, especially with respect to art. We assume

that one important attribute of a successful computation is that it halts. If a machine

halts, it is by definition ephemeral. It is not a perpetual machine, but rather a machine

that flits into existence.
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6.4.2 Scalability and Relativity

One can define relationships without defining absolute materials. This means

that the concept is scalable to the resources available. Scalability is common in music.

Composers have always explored variable ensembles, durations and other parameters.

Defining relationships relatively as opposed to absolutely is also prevalent in

other art forms. One reason why this chapter has multiple references to Sol LeWitt

is that much of his art is scalable. LeWitt often indicates a location for each element

relative to the locations of other elements. In many of his “wall drawings,” he provides a

score realized and installed by a set of draftsmen. In these pieces, structural isomorphism

from installation to installation can never be broken. The piece retains its structure

independent of the size of the wall because it is defined relative to the size of the wall.

It is completely scalable.

Such scalability results from relativities that are proportional as opposed to

absolute. For example, telling a person to move three feet from their current location

is not scalable; however, telling them to move a distance half the height of the closest

person is. A scalable relation specifically in Sol LeWitt’s work is provided in Fig. 6.2. In

music, time dilation is a common example of scalability. Composers can prescribe scal-

able temporal relations between elements instead of assigning each element an absolute

time.

When put in the context of computability, the concept of scalability is easily

understood. A computer program can have a set of variables that, when changed, alter

the piece, but do not change the structure of the piece. In concrete terms, modifying a
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Figure 6.1: An instruction from Sol LeWitt’s Wall Drawing 305 (1977)

variable may have little affect on the size of the program, which can imply that there is

a negligible change in the piece’s structure. We can illustrate this idea through a piece

of music that is scalable in length such as Tenney’s HAVING NEVER WRITTEN A

NOTE FOR PERCUSSION (1971). Changing the length of the piece (so long as it

satisfies the instruction “very long”) does not change the structure of the piece at all.

If one considers the score as a computer program, changing the length only increases

the size of the program logarithmically.
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Figure 6.2: Score of James Tenney’s HAVING NEVER WRITTEN A NOTE FOR
PERCUSSION (1971)

6.4.3 On Documentation

Artists often obsess over documentation, especially musicians. For example,

pieces are constantly recorded for safe keeping. One of the most important documen-

tations in music is the score, which functions as a prompt to action and thus somehow

encodes the possibilities of a piece. For most of western music history, the score has

developed to best express said possibilities. Most recently, there has been a dramatic

paradigm shift in the score with the proliferation of the computer and the incorporation

of text. In many ways, it seems that the score tends towards a minimal or elegant

description of a piece.

73



6.4.4 A Final Thought

Artists should be primarily concerned with art itself even if it is derived from

other sources. If art becomes completely predicated on anything but art, the predicate

risks becoming a virus that kills the host. I am happy to admit that I am first and

foremost a composer who has been seduced into computer science and mathematics.

Nonetheless, the simplest and most elegant conceptual ideas drawn from any source

and applied to music have potential to yield interesting and seemingly complex results.

Perhaps not coincidentally, this is often the case with mathematics.
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[81] Henri Poincaré. On the foundations of geometry. Monist, 9:1–43, 1898.

[82] Larry Polansky. Morphological metrics. Journal of New Music Research,

25:289–368, 1996.

[83] Larry Polansky, Alex Barnett, and Michael Winter. A few more words about

James Tenney: Dissonant counterpoint and statistical feedback. preprint, 2009.

[84] Larry Polansky and Richard Bassein. Possible and impossible melody: Some

formal aspects of contour. Journal of Music theory, 36(3):259–284, 1992.
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Appendix A

Scores

This appendix includes short descriptions and scores of the following pieces:

maximum change (2007), room and seams (2008), dissection and field (2008), small

world (2008), towards completeness (2008), for Sol LeWitt (2009), for gregory chaitin

(2009), field and perfect circuit (2009), recitation, code, and (perhaps) round (2009),

Approximating Omega (2010) and pedal, triangle machine, and (perhaps) coda (2010).

Their inclusion intends to provide concrete examples of how music can inform research

and vice versa.

Note that several of these works integrate ideas expressed in Structural Metrics

on several hierarchical levels. For example, many of the works actually define subsets

of possibilities (as discussed in the preface) of a meta-idea first defined in a piece called

sound.sound (2007). In this piece, the title is the score itself. In the pieces that subset

sound.sound, the realization of the mathematical objects that are the ‘.’ in sound.sound

are singular occurrences that are ephemeral with respect to the entirety of the piece (as

opposed to a ‘grander scheme’ in which all things are ephemeral). This idea of ephemera
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prompted the more general discussion of ephemera provided in the conclusion. But what

makes something ephemeral, especially in a temporal soundscape such is the case with

music, is that its existence be brief and fleeting. In most of these pieces, the duration

of the work is undetermined. The duration of the realization of the ‘.’ is most often

expressed as a proportion of the length of the entire piece. This is possible by the

structural definition of scalable relations also discussed in the conclusion.

On the other hand, works such as maximum change and small world consist

exclusively of one idea that permeates the entire piece: the realization of a particular

mathematical object.

A.1 maximum change

maximum change for four percussion instruments is the first piece in the ap-

pendix which engendered ideas for Structural Metrics. The piece enumerates all timbral

possibilities of a static chord with four pitches. Each instruments can play up to all

four pitches at once. The local morphological constraint is that from chord to chord,

each pitch is sounded by a different instrument (hence the title maximum change). The

global morphological constraint is that each chord sounds only once.

The morphology can be mathematically defined and abstracted as a Hamilto-

nian path on a graph denoted as Tn,k,l where l, k, n are natural numbers satisfying the

condition l ≤ k. The set of vertices of Tn,k,l consists all k-tuples (x1, x2, . . . , xk) where

xi ∈ {1, 2, . . . , n}. Two such k-tuples α = (x1, x2, . . . , xk) and β = (y1, y2, . . . , yk) are

connected by an edge if and only if xi = yi for exactly l values of i ∈ {1, 2, . . . , k}.
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(a,x)

(a,y)

(a,z)

(c,z)

(c,y)

(c,x) (b,z)

(b,y)

(b,x)

Figure A.1: Graph of T3,2,0 with a Hamiltonian cycle

In the case of maximum change: n = 4 is the number of symbols or timbres;

k = 4 is the tuple or chord size, and l = 0 is the number of positions in the tuple

that have the same value from chord to chord (or tuple to tuple or vertex to vertex).

For example, a vertex represented by {1, 2, 3, 4} denotes that C, D, E, F-sharp may

be performed by crotales (1), glockenspiel (2), chimes (3), and piano (4), respectively.

Since the local morphological constraint is that each pitch be performed by a different

instrument from chord to chord, then the vertex representing {1, 2, 3, 4} is connected to

{2, 1, 1, 1}, {2, 3, 2, 2}, etc. Since the graph is Hamiltonian, a non-repeating, exhaustive

enumeration satisfying the local morphological requirements is possible. In [104], it is

shown that all graphs Tn,k,l where n ≥ 3 and k ≤ l + 1 are Hamiltonian.
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maximum change
for azer akhmedov

dedicated to the people of the world against whom a war on civil liberties, democracy,
prosperity, and sovereignty is currently waged by a small, elitist ruling class intent
on global power. may we overcome such tyranny and live in peace.

-mike winter (2007)

• to be performed with four percussion instruments of long decay with clearly distinct
timbres. for example, circular plates, rectangular bars, hollow tubes, and struck strings
such as crotales, glockenspiel, chimes (with c6, d6, e6, and f#6 removed from a set such that
they can be struck individually and together), and piano (struck with mallets inside the
piano with the sostenuto pedal depressed throughout keeping the dampers off c6, d6, e6,
and f#6), respectively. each instrument placed reasonably far apart from the others.

• a pitch in the given score can be transposed such that every occurrence of that pitch is
also transposed the same amount and such that the conglomerate chord always consists
of four different pitches. for example, all c6 can be changed to b5.

• each tone in a given measure struck simultaneously across all parts and allowed to ring
freely.

• eight to twelve seconds between each attack.
• a constant strike velocity throughout such that all tones sound clearly and equally
present but not loud.

• score is written as sounds.
a special thanks to azer akhmedov whose help made this work possible.
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A.2 room and seams

Figure A.2: de Bruijn graph of B(3, 2)

room and seams is constructed from a mathematical object called a de Bruijn

sequence (after Nicolaas Govert de Bruijn [43]). A de Bruijn sequence, B(n, l), contains

all words of length l from an alphabet of size n such that every word appears only once

because it overlaps with the previous and next words by l− 1 characters. Essentially, it

is the fastest way to brute force a combination lock. The sequence can be represented by

a Hamiltonian path on a directed graph (often referred to as a de Bruijn graph) where

the vertices are all words of length l from a given alphabet of size n and two vertices

are connected by a directed edge if the in-vertex overlaps by l − 1 characters with the

out-vertex (see Fig. A.2).

In room and seams, the alphabet size and word length equal 4. Each character

in the alphabet represents a group of performers located in a room as far as possible from

all other groups. When a group’s character occurs in the sequence, they sound a tone.
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Thus, the tone, which is of the same pitch for all performers, is passed around the room

such that every spatial sequence of length 4 occurs in the shortest total morphology

possible.
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room and seams 
for l. taylor and n.g. de bruijn 
 

each staff is read by a different group of people. each group 
situated in a room as far from the others as possible. 

a group consists of at least one person playing a pitched 
percussion instrument that when struck and allowed to ring 
has a long decay time or can also be struck to make a short 
punctuated sound. the group may also include instruments 
that can sustain a tone continuously. the sustained tone 
instruments need not play every measure.  

each measure indicates a span of time that is variable from 
measure to measure. changes in time per measure should be 
statistically uniform in general though they may still vary a 
great deal.  

all performers play the same pitch throughout, which is also 
the same for all groups. notes in different staves within the 
same measure should be interpreted with simultaneous 
attacks.  

for the percussion instruments, unfilled notes represent 
tones that should be allowed to ring until the next tone is 
initiated or until the natural decay of the instrument, 
whichever comes first. for sustained tone instruments, each 
tone should be held for at least the duration of the 
percussion tone’s decay and at most the duration till the next 
initiated tone. if there is more than one sustained tone 
instrument in a group, exits may be staggered. any duration 
of silence may occur before a new tone is initiated. the 
performers are encouraged to explore no silence or silence 
equally. 

filled notes with a dot above represented a very short 
punctuated tone performed only by the percussionist.  

repeats optional. any number of times. 

dynamic generally constant. 

clear but not loud. 

 

 

michael winter (june 2008) 
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A.3 dissection and field

As with room and seams, dissection and field is also constructed from a de

Bruijn sequence. The alphabet in this case consists of three numbers {−1, 0, 1} that

represent direction in a pitch morphology; down, same, up, respectively. The word

length is 6. The piece goes through all pitch contours of size 6 in as few tones as

possible. There is an added global morphological constraint that the running sum of

the sequence stay within a reasonably small range so that pitches do not get extremely

high or low. A computer program in a constraint programming language generated

such a sequence. The final pitch morphology was pieced together from several musical

fragments such that it conformed to the contour sequence.

The piece integrates the above idea with larger formal concerns. Two groups

run in parallel following the contour sequence. In the score, the notes and rests (the

latter of which were arbitrarily inserted) have associated markings that indicate general

durations. Each performer plays independently of the others, which blurs the sequence

to some extent. Also, one of the performers departs from the sequence for a significant

portion of the piece and sustains a high-pitched tone.
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dissection and field
• for miwako abe
• dedicated to hakan kjellerstrand and christian wolff
• in memoriam harris wulfson

sometimes together, sometimes apart. one or more performers per part/staff such that all notes are realized, but not 
necessarily by all performers. numbers above or below each staff indicate general duration for each sound or silence. all 2s 
indicate longer durations than all 1s and all 3s longer than all 2s. some 3s should be realized as very long. the number of tick 
marks appended to each notehead corresponds to the number indicating general duration. the caret symbol indicates a rest 
(see christian wolff's exercises). if the ensemble is mixed with instruments that cannot sustain the same length (such as winds 
and/or percussion with strings), long tones may be held (much) longer by the performers that can sustain longer. in this 
case, the performers that cannot sustain as long wait in silence accordingly after finishing the tone. between rests, repeated 
numbers are realized as the same duration. successive notes uninterrupted by a rest may be slurred. performers should 
explore pitch deviations between 50 cents above and below the written pitch. a high triangle notehead without ledger lines 
indicates a high tone with a pitch that is the same between the top two parts (though not necessarily the highest pitch 
possible or the highest pitch in the piece). this tone sustains continuously in the topmost part for a long time. the entrance 
and exit of this tone may be accented by a pitched percussion instrument with a decay of half a second or more. any note in a 
part may be transposed such that—except for the sustained high tone explained above—the contour of successive notes 
remains the same (up, down, sameness), vertically aligned notes in the top two parts remain in unison, and notes in the 
bottom part remain lower than or equal to vertically aligned notes in the top two parts. throughout; soft, yet clear.

mike winter (los angeles, 2008)
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^
œn œn œn œb œb œb ^ œn

œn œb œn œn œn œn œn
3 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1

&

&

&

— — — — — — — — — — — — — — — —

œb œn œn œn œb œn œn œn œn œn œn œn ^ œn œn œn
1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1

œn œn œn œn œn œb œb œn œn œb œ# œn ^ œn œn œb
1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1

&

&

&

— — — — — — — — — — — — — — — —

œn œb œb
^

œn œn œ# œ# œn œn
œn œn œn œn œn œb1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1

œb œn œn ^ œn œn œn œn œn œn œn œn œn œn œ# œb
1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1
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&

&

&

— — — — — — — — — — — — — — — —

œn œn œ# œn ^ œn œb œn
œn œn œn œn œn ^ œ# œn

1 1 1 1 3 1 1 1 1 1 1 1 1 2 1 1

œn œn œn œn ^ œn œn œn œn œn œn œn œn ^ œn œb
1 1 1 1 3 1 1 1 1 1 1 1 1 2 1 1

&

&

&

— — — — — — — — — — — — — — — —

œb œn œn œb œ# œ#
^

œ#
œn œn ^ œn œn œn œn

œb1 1 1 1 1 1 2 2 2 2 3 1 1 2 1 1

œb œb œb œn œb œb ^ œb œn œn ^ œn œn œn œn œn
1 1 1 1 1 1 2 2 2 2 3 1 1 2 1 1

&

&

&

— — — — — — — — — — — — — — — —

œ# œb œ# œb
^

œb œb œb œb œb œb œn œn
^

œb œb
1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 2

œn œn œn œn ^
œb œb œb œ# œb œb œn œn ^

œb œb
1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 2

&

&

&

— — — — — — — — — — — — — — — —

œb œn œn œn œn œn œn œn œn œn
^ œn œn œn œn œn

1 2 1 1 1 1 1 1 1 3 3 1 1 1 1 1

œb œb œb œ# œ# œ# œ# œn œn œn
^ œn œn œn œn œn

1 2 1 1 1 1 1 1 1 3 3 1 1 1 1 1

&

&

&

— — — — — — — — — — — — — — — —

œn œn œn œ# œn œn œn œn
^ œ# œb œn œn œ# œ#

œb
1 1 1 1 1 1 1 3 2 1 1 1 1 2 1 2

œn œn œn œn œb œn œn œn ^ œ# œn œn œn œ# œ# œb
1 1 1 1 1 1 1 3 2 1 1 1 1 2 1 2
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&

&

&

— — — — — — — — — — — — — — — —

œn œn œb œb œn œn œ# œn œn œb œn œn ^ œn œ# œn
1 2 1 1 1 2 1 1 2 1 1 1 1 1 1 1

œn œn œb œb œn œn œ# œn œn œ# œn œn
^

œn œn œb

1 2 1 1 1 2 1 1 2 1 1 1 1 1 1 1

&

&

&

— — — — — — — — — — œn œn œn œn œn ^

œn œn œb œn œb œn
^

œb œb — œn œn œn œn œn ^

1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 3

œn œn œ# œn œn œn ^ œn œn œn œn œn œn œn œn ^

1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 3

&

&

&

œn œn œb œb œ# œ# ^ œn œn œn œb œb œb
^

œn œb

œn œn œb œb œ# œ# ^ œn œn œn œb œb œb
^

œn œb1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1

œn œ# œn œn œn œn
^ œb œn œb œb œb œb ^ œn œn

1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1

&

&

&

œn œn œn œn œn
^

œb œb œn œb œn œn œb ^ œb œn

œn œn œn œn œn
^

œb œb œn œb œn œn œb ^ œb œn
1 1 1 1 1 2 1 1 1 1 1 1 1 3 1 1

œ# œ# œ# œ# œ# ^
œb œb œb œb œn œn œb ^ œb œn

1 1 1 1 1 2 1 1 1 1 1 1 1 3 1 1

&

&

&

œn œn œn œb ^ œb œb
œb œn œn œn œb œb œb œ# œ#

œn œn œn œb ^ œb œb
œb œn œn œn œb œb œb œ# œ#

1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1

œn œn œn œb ^ œb œb œ# œn œb œb œb œb œb œn œn
1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1
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&

&

&

^ œn œn œn œn ^ œn œn
œn œ# œn œn œn ^ œ# œb

^ œn œn œn œn ^ œn œn
œn œ# œn œn œn ^ œ# œb

3 1 1 1 3 1 1 1 1 1 1 1 1 2 2 2

^ œn œn œn œn ^ œn œn œn œn œn œn œn ^ œn œn
3 1 1 1 3 1 1 1 1 1 1 1 1 2 2 2

&

&

&

œb
^ œn œb œn œn œb

^ œb œb œn œn œn œn œn œb

œb
^ œn œb œn œn œb

^ œb œb œn œn œn œn œn œb
2 2 1 1 2 1 3 3 1 1 1 1 1 1 1 1

œn ^ œn œn œn œn œn ^ œn œn œb œn œn œn œn œb

2 2 1 1 2 1 3 3 1 1 1 1 1 1 1 1

&

&

&

œn œn œ# œn œn œn œb œn œb ^ œn œb œn œb
œn œn

œn œn œ# œn œn œn œb œn œb ^ œn œb œn œb
œn œn

1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1

œn œn œn œn œn œn œn œn œb ^
œn œn œn œb œn œn

1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1

&

&

&

œn
^

œb œn œn ^ œn œn œn œn ^ œn œn œb œn œb

œn
^

œb œn œn ^ œn œn œn œn ^ œn œn œb œn œb

1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1

œn
^

œb œn œb ^
œb œn œb œb ^ œn œn œb œn œb

1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1

&

&

&

œb œb
^ œ# œ# œb œb œb œn œ# œ# œn œn ^ œn œb

œb œb
^ œ# œ# œb œb œb œn œ# œ# œn œn ^ œn œb

1 1 2 1 1 1 1 1 1 1 1 1 1 3 1 1

œb œb
^

œn œn œb œb œb œn œb œb œb œb
^ œn œn

1 1 2 1 1 1 1 1 1 1 1 1 1 3 1 1
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&

&

&

œb œb œn œn œb œb œn œn œn œn œb œn ^ œn œn œn

œb œb œn œn œb œb œn œn œn œn œb œn ^ œn œn œn
1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1

œn œn œ# œ# œb œb œn œn œb œb œn œn ^ œn œn œn
1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1

&

&

&

œn œn œn œn ^ œn œn œb œb œn œb œn
^ œn œb œb

œn œn œn œn ^ œn œn œb œb œn œb œn
^ œn œb œb

1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1

œn œn œn œn ^
œn œn œn œn œn œb œn

^ œn œb œb

1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1

&

&

&

œb œb œb œn œn œn ^ œn
œb œb œn œn œb œ# œ# œ#

œb œb œb œn œn œn ^ œn
œb œb œn œn œb œ# œ# œ#1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1

œn œb œb œn œn œn ^ œn œn œn œn œb œb œb œb œb
1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1

&

&

&

œ#
^ œn œn œn œn œb œb œn œn œn œn œn œn œn œb

œ#
^ œn œn œn œn œb œb œn œn œn œn œn œn œn œb

1 2 1 1 1 1 1 1 2 1 2 1 1 2 1 1

œb ^
œn œn œn œn œ# œ# œb œb œn œn œn œn œn œb

1 2 1 1 1 1 1 1 2 1 2 1 1 2 1 1

&

&

&

œb œn œn œn
^

œb œn œn œn œn œn œn œn œn ^ œn

œb œn œn œn
^

œb œn œn œn œn œn œn œn œn ^ œn
1 1 1 1 3 1 1 1 1 1 1 1 1 1 3 2

œb œn œn œn
^

œb œn œn œb œb œb œb œn œn ^ œn
1 1 1 1 3 1 1 1 1 1 1 1 1 1 3 2
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&

&

&

œn œb œn œb œb œn œn ^ œn œn œn œn œb œb
^

œn
œn œb œn œb œb œn œn ^ œn œn œn œn œb œb

^
œn

2 2 2 2 2 2 3 1 1 1 1 1 1 1 1 1

œn œn œn œn œn œn œb ^ œb œn œn œb œn œb
^

œn

2 2 2 2 2 2 3 1 1 1 1 1 1 1 1 1

&

&

&

œn œb œb œb ^ œn œn ^ œn ^ œn ^ œn œn œn œb

œn œb œb œb ^ œn œn ^ œn ^ œn ^ œn œn œn œb
1 1 1 1 3 1 1 3 3 1 3 2 1 1 1 1

œn œb œb œb ^ œn œn ^ œn ^ œn ^ œn œn œn œb
1 1 1 1 3 1 1 3 3 1 3 2 1 1 1 1

&

&

&

œn ^ œb ^
œb œn œn œn œb œb œb œb ^ œb œn œn

œn ^ œb ^
œb œn œn œn œb œb œb œb ^ œb œn œn

1 1 3 3 1 1 1 1 1 1 1 3 1 1 1 1

œn ^ œn ^ œb œn œn œn œn œn œn œn ^ œn œn œn

1 1 3 3 1 1 1 1 1 1 1 3 1 1 1 1

&

&

&

œn œb œb œb œb œb ^ œn ^ œn œb œb
^

œb œb œn

œn œb œb œb œb œb ^ œn ^ œn œb œb
^

œb œb œn
1 1 1 1 1 1 2 3 1 1 1 3 1 1 1 1

œn œb œn œn œn œn
^ œb ^ œn œn œ# ^ œ# œn œn

1 1 1 1 1 1 2 3 1 1 1 3 1 1 1 1

&

&

&

^

^

3

^

3
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A.4 small world

small world is an exploration in structural isomorphism. Players independently

interpret a randomly generated, connected graph where vertices represent events and

edges determine whether or not an event can succeed another on an arbitrary walk on

the graph. The events, which are variable, are predefined by the ensemble. The piece

is therefore predicated only on structure and not materiality. The performers create

linear morphologies with temporal dependencies by exploring paths in that structure.

In this sense, small world is also an homage to Christian Wolff’s For One, Two or Three

People. For different performances that realize the same graph, the structure remains

the same regardless of the events defined by the ensemble. Note that the implemented

graphs are not necessarily “small-world networks” as outlined in [102], rather the title

is simply a play on the notion of connectivity.
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small world 

a random, connected graph with v vertices and e edges such that 5 ! v ! 79 and  
v – 1 ! e ! 2v. each vertex represents a pre-determined, distinct event. for example, an event 
might be a fragment or event of another piece by other composers including, but not at all 
limited to, joseph kudirka, johannes ockeghem, james orsher, michael pisaro, mark so, tashi 
wada, christian wolff, etc. or the events may be differentiated by timbre, pitch, dynamic, 
duration, location, type of action or sound object, etc. perhaps explore events that may create an 
impasse. for example, assigning a vertex an event that must interact with an already occurring 
event or that can only occur after the occurrence of an event or succession of events within or 
without the set of events assigned to the vertices of the graph (see christian wolff’s for one, two, 
or three people). 

a starting vertex (or vertices for several voices; a voice being an individual path through the 
graph) is arbitrarily determined for the first occurring event of each respective voice (though 
each voice need not enter simultaneously). each successive event within a voice must be an 
event assigned to a neighboring vertex of the previous vertex/event. the exploration of voice 
following in moderation is encouraged 

the piece ends any time after each voice has played all the events or when an impasse has been 
reached. 
 
 
the following pages contain an example set of 20 events. also, a series of graphs (randomly 
generated by the first example algorithm provided below) all with 20 vertices but each with a 
different number of edges are provided. the graphs have been formatted for readability. 
distances between vertices do not indicate anything such as duration. all that matters is whether 
two vertices are connected implying a temporal succession. these examples are freely usable 
and changeable. it is also encouraged to create different graphs and event sets and to realize 
more than one graph simultaneously 
 
 
a random, connected graph may be generating using the following algorithms. 

example 1: 
1) choose a number of vertices, v, and a number of edges, e, such that  

5 ! v ! 79 and v – 1 ! e ! 2v; 
2) initialize the graph by adding two vertices and connecting them; 
3) add a vertex and connect it to a vertex already present in the graph; 
4) repeat step 3 until v vertices are present in the graph. 
5) choose 2 random vertices to connect such that the edge does not create a loop or a 

parallel edge; 
6) repeat step 5 until the e edges are present in the graph. 

• note that steps 5 and 6 are not necessary if e = v – 1. 

example 2: 
1) choose a number of vertices, v, and a number of edges, e, such that  

5 ! v ! 79 and v – 1 ! e ! 2v; 
2) generate all connected graphs with v vertices and e edges; 
3) randomly select one of the graphs. 

 

-mike winter (los angeles; september 2008)  
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1) successive subsets of a harmonic series; sounded melodically descending or ascending 

2) stones; soft 

3) a relatively loud burst of short percussive sounds followed by an indefinite duration of 
silence 

4) many, many very small falling objects 

5) a long continuous tone after at least 10 seconds of silence 

6) the melody of a folk song with several notes replaced by silence or transposed by a small 
amount 

7) several sine tones of random pitch with staggered, imperceptible entrances and exits 

8) a very slow glissando 

9) 10 to 20 seconds of a sound similar to white noise 

10) a tangible gift; made during the piece; presented or displayed 

11) a very slow glissando that intersects with a glissando already sounding 

12) a resonator imposed over and activated by an already sounding event 

13) a series of words generated from a markov chain of some high order 

14) waiting; waitfulness 

15) a distant sound 

16) plucked; perhaps a cactus 

17) bowed 

18) a bell-like tone with relatively long decay; allowed to vibrate; followed by silence; possibly 
repeated several times with the same duration between the attack of each tone 

19) silence followed by a repetition or mimicking of no less than 3, nor greater than 8, successive 
events of another voice 

20) silence followed by a repetition or mimicking, irrespective of order, of no less than 3, nor 
greater than 8, of the events that have just occurred within or without the above listed 
events 

 

118



7

19

17

11

6

16

12

20

13

10

15

18

9 53

4 14

8

2

1

119



14

16

4

3

13

8

7

9

10

17

11

15

12

2

20

19

185
6

1

120



6

18

7

4

16

19

1

11

2

5

122

8

14

15

13

17

9

3

20

10

121



4

6

2

19

11

7

18

20

5

9

14

1013

12

16

3

17
15

8

1

122



A.5 towards completeness

towards completeness explicitly implements a structural mutation. As ex-

plained in the beginning of the appendix, towards completeness is the first piece where

the mathematical object (which is the mutating structure) is meant to be an ephemeral

occurrence with respect to the entire piece, which consist primarily of a long, high-

pitched sustained tone.

The elements of the structure are 13 pitches. At first, the graph only connects

two elements with one edge. The structure is mutated by adding an edge until the

graph is complete; all vertices connect with all others. An edge can only be added if the

mutant graph maintains only one connected component. Throughout the transforma-

tion, performers take walks on the mutating graph with the primary instruction that

only adjacent elements must succeed each other (similar to small world). There are

additional morphological requirements explained in the performance instructions of the

score. Note that there are many possible manifestations of the transformation (towards

completeness) of which only one is included below.
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towards completeness 

for adam overton and quatuor bozzini 

the first steps to create a version of the score are to print pages 1 through 78 on transparencies (if 
not already provided so) and follow this procedure: 

• randomly choose one of the transparencies. each one corresponds to an edge in a graph. 

• randomly choose from the list of next possible edges/pages. the choices will be visible 
when placed on top of white opaque paper and correspond to the number on the top left 
of the transparencies. 

• repeat step 2 till all the transparencies have been chosen. when stacked on top of each 
other, the list of next possible edges/pages will change accordingly.  

note: each player does the above procedure independently. it is advised to keep the pages stacked in order with 
the most recently chosen edge/page on bottom. it may also be helpful to keep an ordered list of the 
chosen edges/pages. a custom written computer program is available that automatically generates a 
score. 

a realization is composed of 16 sections diagrammed on the following page, which contains 
additional performance instructions as well as further instructions for creating a version of the 
score. the first and last sections consist exclusively of silence. the second and second to last 
sections consist exclusively of a sustained high-pitched tone, which sustains through the other 
middle sections. this tone should be as continuous/unchanging as possible. its entrance and exit 
may be accented in unison by a pitched-percussion instrument of long decay. for the entrance 
accent, the percussion instrument is allowed to let vibrate. the exit accent is punctuated (short). 

in the other sections, the performers not sounding the high sustained tone interpret the graph by 
exploring morphologies (or phrases/paths) in the structure as follows: 

• successive pitches in a morphology must be connected by edges in the graph. 

• morphologies are at least 2 tones long and at most the number indicated in the section 
diagram.  

• pitches do not repeat within a morphology. however, the first pitch of a new morphology 
may be the same as the last pitch of the previous morphology. phrases should generally 
ascend or descend within the pitch-space. 

• except for the ending tone of a morphology, all others are of equal duration. this duration 
may (and should) vary from morphology to morphology from as much as 2 seconds per 
tone to the minimum tone duration given in the section diagram. 

• except for the ending tone of a morphology, all others are either slurred or punctuated. 
slurred morphologies should occur more often than punctuated ones. 

• typically, the ending tone of a morphology may be punctuated or held any duration less 
than the approximated morphology length up until the ending tone. However, the last 
tone should occasionally sound for a very long time. punctuated ending tones should 
occur with equal frequency to longer ending tones.  

• a morphology may be followed by silence of any duration less than the approximated 
morphology length. 

note: within the limits set forth in the instructions, performers should explore various possibilities to the 
extent possible. For example, by varying paths through the graph and morphology lengths. 

* for all performers an equal dynamic. throughout, clear but not loud. 

mike winter (2008) 
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5 6 7 8 9 10 11 12 13 14 15 16

section 
duration

minimum
tone durarion 

 maximum
morphology length

1 2 3 4

≥ 1’ ≥ 5’
18”

≥ 1’≥ 5’
17” 16” 15” 14” 13” 12” 11” 10” 9” 8” 7”

number of
edges added

—

section number

silence silenceevents

towards completeness

mbw (2008)

36” 34” 32” 30” 28” 26” 24” 22” 20” 18” 16” 14”

1” 0”

4 5 6 7 8 9 10 11 12 132 3

3 4 5 6 7 8 9 10 11 121 2

.58” .46” .37” .29” .23” .17” .12” .08” .04”.74”

initiate sustained 
high-pitched tone

begin graph interpretation end graph interpretation

end sustained
high-pitched tone

18”0” 35” 51” 1’06” 1’20” 1’33” 1’45” 1’56” 2’06” 2’15” 2’23”2’30”

• sections 1 and 16 should be the same the same duration as well as sections 2 and 15, which should be longer. both, preferably long. only 
sections 3 through 14 are spaced proportionally to time in the diagram.
• the durations of sections 3 through 14 may be scaled uniformly by any factor such that their total duration is less than or equal to half 
the duration of section 2. a scaling by a multiple of 2 is given. time markings starting  from section 3 are given for the unscaled duration.
• the high-pitched sustained tone starting at the beginning of section 2 should be the highest pitch in the piece and sustain continuously 
till the end of section 15. perhaps a harmonic.
• performers interpreting the graph may enter staggered; however, at the end of section 14, they must stop simultaneously with a punctu-
ated tone.
• the number of edges added is the number of transparencies added in the order determined by the procedure on the preceding page, 
which ensures a connected graph. by section 14, the graph is complete in that all vertices will be connected to all other vertices. it is 
perhaps best to make copies (on white paper) beforehand so that their is a page for each section; each with the proper number of 
edges—1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78 for sections 3 through 14. versions of the score generated by custom computer software are 
provided as examples as well as usable versions. the software can be obtained to generate new versions instead of using the transparen-
cies.
• the following tuning across all octaves is preferred over 12-tone equal temperaments (written as the nearest pitch in 12-tone equal 
temperament with a deviation in cents)—G+0, A+4, B-14, C#-49, D+2, F-31. another option is to predetermine an arbitrary cent deviation 
up to or down to 50 cents from each written pitch in 12-tone equal temperament. the deviations should be the same for all performers.
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A.6 for Sol Lewitt

for Sol Lewitt is an attempt at defining a work of music primarily by relativities

such that the piece is scalable to the extent possible (as in many of Sol LeWitt’s works—

hence, the namesake/dedication). Like small world, it is also a study of structural

isomorphism from realization to realization. Just as LeWitt’s pieces are defined relative

to the horizontal and vertical sizes of a given wall, for Sol LeWitt is defined relative

to an arbitrary pitch range and duration. Another goal was to define the piece in as

few words as possible such that there is no redundant information. This hints at a

deeper level of structure provided by a description that strives to be elegant in the

algorithmic information sense. While the algebra and geometry of the piece are perhaps

best communicated by text alone and imagined in mind, Fig. A.3 and A.4 provide

visual analogs of the piece where the x-axis is time and the y-axis is pitch.

a
b

c

d

e

a
b

c

a

1st instruction

2nd instruction

3rd instruction

Figure A.3: for Sol LeWitt : illustration of instructions
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Figure A.4: for Sol LeWitt : 4 visual realizations
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for Sol LeWitt 
1 glissando; 4 sustained tones 

 

a glissando: 

•  that has a minimal, almost imperceptible slope. 

•  that starts and ends at the midpoints in time of two sustained tones with the same 
duration (at most half the duration of the glissando); the first of which ends and the 
second of which begins in unison with the glissando. 

•  with a midpoint in pitch that is equidistant to two (other) sustained tones with the same 
duration (at least three times the duration of the glissando); the first of which ends and 
the second of which starts at the midpoint in time of the glissando. 

 

the entrances of the sustained tones are preferably accented with percussive attacks that 
decay slowly and the exits are preferably accented with percussive attacks that are 
punctuated. 

long; clear; not loud. 

 

 

 

–michael winter  
(february, march, april 2009; 

new york city, san francisco, los angeles) 
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A.7 for gregory chaitin

for gregory chaitin plays on the notion of incomputability; of lack of structure.

This piece contains a realization of a subset of the halting probability’s binary expan-

sion (first defined by the namesake of the piece, Gregory Chaitin [27]). The halting

probability is the the probability that a program generated by a toss of a fair coin will

halt for some universal prefix-free turing machine. To know each bit n in the expansion,

one must know whether or not all computer programs of length n halt. Because this

is incomputable, the halting probability is maximally unknowable; has no structure.

However, the first 64 bits of the halting probability for a particular universal prefix-free

turing machine have been shown by Cristian Calude et al. [22].

The total lack of structure of the halting probability is predicated on an infinite

expansion. In practice, it is unclear what it means to embed a finite subset of an

unbounded, maximally complex object. Like towards completeness, most of the piece

consist primarily of a long, high-pitched sustained tone in which the realization of part

of the halting probability is a very brief occurrence somewhere in the middle. This

punctuation is thus more than just ephemera; it is a juxtaposition of opposing logics to

the most extreme degree. An extremely simple object exists (the high-pitched sustained

tone) with an extremely complex one (the realization of the halting probability).

The score details how to realize the binary expansion of the halting probability.
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for gregory chaitin 
 
• a continuous tone with a distinct pitch sustained for a long time. the entrance of this tone is preferably accented with a percussive attack that decays slowly. 

the exit is preferably accented with a percussive attack that is punctuated. 
 
• a realization of a subset of at least 8 bits (preferably more) of the halting probability for some universal prefix-free turing machine.* the sequence of digits are 

read linearly, ʻ0ʼ and ʻ1ʼ representing two distinct events, which remain constant throughout. each event should create a sound with partials that 
interact/interfere with the sustained tone. 

 
• the piece starts and ends with the sustained tone alone for a duration at the very least twice the length of the realization of the halting probability, which is 

ephemeral with respect to the total duration of the piece. 
 
• perhaps with the performers and instruments out of view or in a dark space with the performers and/or instruments dimly (and directly) lit if necessary. 

perhaps as an installation. allowed to repeat. possibly with silence between repeats. 
 
• clear. not loud. delicate. almost still. concerned with the phenomena of sound itself. 
 
 

* an example of a halting probability is provided below. see anything written by chaitin on the number 
ʻomegaʼ (or chaitinʼs constant), which is the halting probability for some universal prefix-free  

turing machine. the given bit string was calculated by cristian calude et al. in  
ʻcomputing a glimpse of randomnessʼ 

 
0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 1 1 0 1 0 0 0 1 1 1 1 1 1 0 0 1 0 1 1 1 0 1 1 1 0 1 0 0 0 0 1 0 0 0 0 

 
-michael winter (new smyrna beach, fl; may, 2009) 

 
 
 
 
a realization for philip thomas 
 
• grand piano 
 
• the sustained tone should be a note on the piano with three strings. the entrance of the sustained tone is first actuated (and slightly accented) by the 

hammer and sustained by an e-bow on the middle string. the exit of the sustained tone is slightly accented by a punctuated (very short) strike of the 
hammer. 

 
• the bits of the halting probability are realized on a note with two strings that is three octaves below the sustained tone. a ʻ0ʼ is realized by striking the strings 

gently (by depressing the key) while touching a node such that a harmonic of the open string sounds. the particular node may vary from tone to tone (ʻ0ʼ to 
ʻ0ʼ). perhaps explore random nodes that produce very high harmonics. a ʻ1ʼ is realized by gently striking the open string. all tones allowed to decay to 
nothing. 
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A.8 field and perfect circuit

The mathematical object embedded in field and perfect circuit is an example

of a labeled graph used for generative purposes. It is a circuit representation of a perfect

squared square, which is a dissection of a square into several squares of distinct area.

These types of circuits, called Smith diagrams, have the property that several paths

from the positive to negative end of the circuit share vertices and the accumulated sum

of the edge lengths from any of the poles to a shared vertex is always equal across

different paths. The score includes the Smith diagram of the perfect squared square of

lowest order [45]. (For more on squared squares and Smith diagrams see [2].)

In field and perfect circuit, the edge labels represent the amount of time that

a particular event may occur. All the performer start at the same time and each

individually chooses a path from the positive pole to the negative pole playing successive

distinct events for a length proportional to the label of each edge that is crossed. The

conglomerate timbre shifts in various ways based on how many shared vertices are in

the realized paths. Sometimes one or more events start and/or stop at the same time

creating more obvious shifts of the conglomerate timbre. At other times, performers

change events alone and the conglomerate timbre shifts more subtly.
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field and perfect circuit 

 

 

• a continuous sound sustained for a long time. the entrance of this sound is preferably accented with a percussive attack that decays slowly. the exit is 

preferably accented with a percussive attack that is punctuated. 

 

• at least 5, preferably more, simultaneous realizations of the smith diagram of some simple perfect squared square or rectangle* (which is essentially a circuit 

represented by a directed graph) according to the following guidelines and possibilities: 

• the sum of the edge labels in a path from the positive pole to the negative one corresponds to some predetermined amount of time, which is 

ephemeral with respect to the total duration of the piece. (all paths have the same sum.) 

• the circuit/graph is realized by starting at the positive pole and moving across edges to adjacent vertices until the negative pole is reached. 

• for each edge crossing, an event occurs for the duration corresponding to the edge label (proportional to the length of any path from pole to pole). the 

start of the first event is accented with a percussive attack that decays slowly. the end of the last event is accented with a percussive attack that is 

punctuated. the start/end of all other events may be accented with a percussive attack that decays slowly or is punctuated. possible events are 

provided below listed from top to bottom in order of the amount they should occur. the top two are mandatory; the bottom two optional. the same 

event cannot repeat successively. 

• a (quasi-)continuous sound with or without a distinct pitch or set of pitches. (favored for longer events.) 

• a short percussive sound quickly repeated at an individual tempo with respect to any other quickly repeated sounds that may already be 

occurring. (favored for shorter events.) 

• a reading of a text relevant to the piece that is not the text of this score. 

• an event perceived as a single gestalt over the duration indicated by the edge label. 

• if 2 or more events start or end at the same time, the accented attacks must be simultaneous. that is, timing should be executed with precision. 

• preferably, all the realizations together traverse every edge in the diagram at least once. if resources limit the number of paths that can be traversed, 

then subsets of paths that have several corresponding starts and stops while crossing as many edges as possible should be preferred. not too dense, 

not too sparse. 

 

• the piece starts and ends with the long sustained sound alone for a duration at the very least twice the length of the realization of the simple perfect squared 

square or rectangle. 

 

• perhaps with the performers and instruments out of view or in a dark space with the performers and/or instruments dimly (and directly) lit if necessary. 

perhaps as an installation. allowed to repeat. possibly with silence between repeats. 

 

• clear. not loud. cohesive. primarily concerned with the phenomena of sound itself. 

 

 

* an example of a perfect squared square, its corresponding smith diagram and possible paths through it are given on 

the following page. see http://www.squaring.net (accessed may, 2009), which has examples of several perfect 

squared squares and rectangles, descriptions of smith diagrams and related information. 

 

- michael winter (new smyrna beach, fl; may, 2009)!
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paths by vertices:

{0, 42, 66, 85, 112}
{0, 42, 66, 77, 85, 112}
{0, 42, 66, 77, 112}
{0, 42, 60, 66, 85, 112}
{0, 42, 60, 66, 77, 85, 112}
{0, 42, 60, 66, 77, 112}
{0, 42, 60, 77, 85, 112}
{0, 42, 60, 77, 112}
{0, 42, 60, 62, 77, 85, 112}
{0, 42, 60, 62, 77, 112}
{0, 42, 60, 62, 112}
{0, 37, 53, 60, 66, 85, 112}
{0, 37, 53, 60, 66, 77, 85, 112}
{0, 37, 53, 60, 66, 77, 112}
{0, 37, 53, 60, 77, 85, 112}
{0, 37, 53, 60, 77, 112}
{0, 37, 53, 60, 62, 77, 85, 112}
{0, 37, 53, 60, 62, 77, 112}
{0, 37, 53, 60, 62, 112}
{0, 37, 53, 62, 77, 85, 112}
{0, 37, 53, 62, 77, 112}
{0, 37, 53, 62, 112}
{0, 37, 62, 77, 85, 112}
{0, 37, 62, 77, 112}
{0, 37, 62, 112}
{0, 33, 37, 53, 60, 66, 85, 112}
{0, 33, 37, 53, 60, 66, 77, 85, 112}
{0, 33, 37, 53, 60, 66, 77, 112}
{0, 33, 37, 53, 60, 77, 85, 112}
{0, 33, 37, 53, 60, 77, 112}
{0, 33, 37, 53, 60, 62, 77, 85, 112}
{0, 33, 37, 53, 60, 62, 77, 112}
{0, 33, 37, 53, 60, 62, 112}
{0, 33, 37, 53, 62, 77, 85, 112}
{0, 33, 37, 53, 62, 77, 112}
{0, 33, 37, 53, 62, 112}
{0, 33, 37, 62, 77, 85, 112}
{0, 33, 37, 62, 77, 112}
{0, 33, 37, 62, 112}
{0, 33, 62, 77, 85, 112}
{0, 33, 62, 77, 112}
{0, 33, 62, 112}

paths by edges:

{42, 24, 19, 27}
{42, 24, 11, 8, 27}
{42, 24, 11, 35}
{42, 18, 6, 19, 27}
{42, 18, 6, 11, 8, 27}
{42, 18, 6, 11, 35}
{42, 18, 17, 8, 27}
{42, 18, 17, 35}
{42, 18, 2, 15, 8, 27}
{42, 18, 2, 15, 35}
{42, 18, 2, 50}
{37, 16, 7, 6, 19, 27}
{37, 16, 7, 6, 11, 8, 27}
{37, 16, 7, 6, 11, 35}
{37, 16, 7, 17, 8, 27}
{37, 16, 7, 17, 35}
{37, 16, 7, 2, 15, 8, 27}
{37, 16, 7, 2, 15, 35}
{37, 16, 7, 2, 50}
{37, 16, 9, 15, 8, 27}
{37, 16, 9, 15, 35}
{37, 16, 9, 35}
{37, 25, 15, 8, 27}
{37, 25, 15, 35}
{37, 25, 50}
{33, 4, 16, 7, 6, 19, 27}
{33, 4, 16, 7, 6, 11, 8, 27}
{33, 4, 16, 7, 6, 11, 35}
{33, 4, 16, 7, 17, 8, 27}
{33, 4, 16, 7, 17, 35}
{33, 4, 16, 7, 2, 15, 8, 27}
{33, 4, 16, 7, 2, 15, 35}
{33, 4, 16, 7, 2, 50}
{33, 4, 16, 9, 15, 8, 27}
{33, 4, 16, 9, 15, 35}
{33, 4, 16, 9, 35}
{33, 4, 25, 15, 8, 27}
{33, 4, 25, 15, 35}
{33, 4, 25, 50}
{33, 29, 15, 8, 27}
{33, 29, 15, 35}
{33, 29, 50}

.
journal 

of combinatorial theory.

.
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A.9 recitation, code, and (perhaps) round

recitation, code, and (perhaps) round consists of two or three parts: a recitation

(plain; chant-like), a code (rising from the ether; cacophonous), and (perhaps) a round

(glorious; strident) occurring at overlapping times. The piece sets a poem entitled “Now

Trips a Lady, Now Struts A Lord” by Elizabeth Winder. The poems contains 16 words.

The code part of the piece incorporates coding theory (hence the name). Performers are

instructed to sing each word and realize with a percussion instrument a unique binary

code associated with each word (detailed in the score). Each binary word contains four

bits. Since there are 16 words, the codewords are equivalent to a Huffman code [59]

with no compression.

The round consists of a ground melody that may be altered by the performers

such that the alteration is similar to the ground. This produces similar results to the

more rigorous structural mutations referred to in the thesis.
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recitation, code, and (perhaps) round 
fifteen minutes for choir with metallic or wooden percussion instruments 

text: Now Trips a Lady, Now Struts a Lord; Elizabeth Winder (2009) 
written for the Canticum Ostrava for premiere at the 2009 Ostrava Days Festival 

-michael winter (la, 2009) 
 
 
 
 
 
 
 
• two or three parts: a recitation (plain; chant-like), a code (rising from the ether; cacophonous), and (perhaps) a round (glorious; strident) occurring at 

overlapping times (as diagrammed below). each individual part is described separately on the following pages. if possible, performers should distribute 
themselves throughout the performance space. singing should be minimal with no vibrato or other embellishments.  

 
 

 
 

• the code and the round should end abruptly. all players end his or her currently sung tone simultaneously with the others. 
 
• the round is optional and can be sung independently if the occasion warrants. 
 
• note that the pitches of the piece derive from a harmonic series. in the more traditional music notation provided in the score, above each note is a 

corresponding cents-deviation (one-hundredth of a tempered semitone) from the nearest pitch in twelve-tone equal temperament. performers should 
familiarize themselves with the scale below transposed into his or her respective range. 
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& œn œn œn œ# œn œb œn œ#
+0 +4 –14 –49 +2 +41 –31 –12
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Now Trips a Lady, Now Struts a Lord 
 
 
 
 
 
 
 
Lost my cat- 
 

 
 
gland in the Chat 
 
       Sanctus 
 
[sans‐culotte] 
 
       blot 
 
from view, My Wick 
 
       You‐‐ 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• recitation (bass) 
 

• a repeated recitation of the poem on a low g. slow. with drawn-out vowels and variable pacing of each syllable. repeated for the entire duration of the 
piece, which may only end on the final word. clear. not loud. 

 
• this part may be solo or with several low voices. in the latter case, the ensemble should experiment with homophonic recitations (with the start and 

end of each syllable cued by one performer at a time). the ensemble may also try independent recitations per performer. in this case, the performers 
should enter and exit staggered with the first and last recitation sung by only one performer. 

 
• the recitation may be accompanied by a continuous, pitched tone in unison with and sustained throughout the recitation. the entrance of the recitation 

and possible accompaniment may be accented with a percussive attack that decays slowly. the exit may be accented with a percussive attack that is 
punctuated. if the recitation is accompanied, the performer shall feel free to take longer pauses between words and repetitions of the poem. 

 
 
 
 

• code (as many vocalists as possible—in all ranges) 
 

• each performer sings words from the poem chosen in succession arbitrarily (that is, no particular order). pitches are also chosen arbitrarily from a set. the 
first, second, and third measures in the music notation below give the sets for time 6ʼ – 7ʼ, 7ʼ – 8ʼ and 8ʼ – 9ʼ, respectively. pitches may be transposed by 
any number of octaves. one pitch per word. the general texture goes from sparse to dense. to ensure this trajectory, durations of the tones should start 
long and get shorter (and louder) throughout the three minutes of the part.  

 
• available pitches 

 
 
• during the singing of each word, the performer realizes, with their respective percussion instrument, the code associated with the given word (provided 

below; read left to right) as follows: disturbing the space to the extent possible, ʻzeroesʼ are realized as one hard strike of the instrument and ʻonesʼ are 
realized as loud rattles or rolls.  

 
• for example, if the player plays a metal pot, a ʻzeroʼ could be realized as a hard strike on the outside, while a ʻoneʼ could be realized as a vigorous 

shaking of the beater inside the pot that strikes the (in)sides in rapid (and perhaps arhythmic) succession. 
 
 

lost  my  cat  gland  in  the  chat  sanctus  
0 0 0 0  0 0 0 1  0 0 1 0  0 0 1 1  0 1 0 0   0 1 0 1   0 1 1 0   0 1 1 1  
 
sans   culotte   blot   from   view   my   wick   you 

   1 0 0 0   1 0 0 1  1 0 1 0   1 0 1 1   1 1 0 0   1 1 0 1  1 1 1 0  1 1 1 1 
 

& œn œn
+0 +2

œn œn œn œn
+0 –14 +2 –31

œn œn œn œ# œn œb œn œ#
+0 +4 –14 –49 +2 +41 –31 –12
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• round (four groups—each in any range)  
 

• performance of the round should be at a rather fast tempo and should sound at a dynamic that matches or is slightly above the rest of the ensemble. the 
round is composed of two possible parts: a ground and possible alterations. the first two groups of performers must start with the ground. successive 
groups may start with the ground or an alteration. the numbers above the ground indicate the start time of each group relative to the start of the round. 
after one reading of the poem performers are free to alternate between the ground and alterations. 

 
• ground 
 

• the ground of the round (shown below in traditional notation) may be transposed by any number of octaves. where durations are given below the 
words (with no notes in the staff above), performers are allowed to choose from any of the available pitches (again in any octave) notated below the 
ground. 

 

 
• available pitches 

 
 

• alteration 
 

• an alteration is any manipulation of the ground that preserves the order of words in the poem. pitches must be from the above set (including octave 
equivalents). one pitch per syllable. the preferred method of alteration is constructed as follows. partition the sequence of symbols below such that 
the partitions generally contain more than 3 and less than 7 symbols. then rearrange the partitions creating a new sequence. performers may create 
several of these sequences prior to performance. an alteration is realized by starting on any pitch and reading the entire sequence of symbols from 

left to right.   ,   , and  indicate that the next pitch must be higher, lower, or the same, respectively.  indicates that the performer may choose 
whether the next pitch is higher, lower, or the same. one pitch per syllable. performers may group any number of words into a phrase. tones should 
generally be short in duration however the last note of a phrase may sustain longer. performers may try to alter and realize the sequence during 
performance (that is, in ʻreal-timeʼ) by realizing disjunct subsequences of the sequence below in no particular order.  
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A.10 Approximating Omega

The first section of Approximating Omega consists of a speaker with accom-

paniment explaining a slightly modified version (for artistic purposes) of Chaitin’s toy

Lisp from his 1994 book, “The Limits of Mathematics” [31]. This lisp consists of sin-

gle symbols/atoms reserved for primitive functions. Each symbol in the language is

mapped to a sound. The second section is a transcription of Chaitin’s computer pro-

gram that approximates Omega, the probability that a random program will halt on

a self-delimiting universal Turing machine. The symbols are realized linearly one by

one by their respective sounds. In addition, any routines in the program bound by

parenthesis also have a continuous sound that starts and ends with the parenthesis that

delimit the routine.

The structure of the piece is completely predicated on the structure of the

program, which has nested routines 17 levels deep at the maximum depth. This structure

is easily seen in the first of the traditionally notated transcriptions of the program. Apart

from a structure borrowed from the program itself, the transcription of a computer

program that approximates a maximally complex number such as Omega is perhaps the

most pure realization of such a mathematical object since any computation or subset

(as in the piece, for Gregory Chaitin) does not so fully encapsulate the phenomenon.
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Approximating Omega 
 
 
Note (to be used as an accompanying document for performances providing resources related to this 
piece): 
 
In a 1975 paper entitled “A theory of program size complexity formally identical to information 
theory,” Gregory Chaitin formally defines Omega, which is the probability that a computer program with 
bits generated by tosses of a fair coin halts on a universal self-delimiting Turing machine. Omega is 
maximally complex and incomputable because no algorithm can determine whether an arbitrary computer 
program halts. The undecidability of what is now known as the “halting problem” was originally shown by 
Alan Turing in his 1936 paper, “On computable numbers, with an application to the 
Entscheidungsproblem,” as a corollary to a computer theoretical proof of Kurt Godel’s incompleteness 
theorem first presented in Godel’s 1931 article, “On formally undecidable propositions of Principia 
Mathematica and related systems I.” 
While Omega is incomputable, Chaitin has written a computer program that approximates Omega with 
increasing accuracy over longer and longer amounts of time. The program is written in a version of LISP 
that Chaitin extended and altered from the original LISP protocol first created by James MCarthy 1958 
with a published explanation in his 1960 paper, “Recursive functions of symbolic expressions and their 
computation by machine.”  
The first [optional] section of this piece consists of an accompanied speaker reading an explanation of 
Chaitin’s dialect of LISP. The text is adapted from Chaitin’s 1994 book, “The Limits of Mathematics.” 
Chaitin has further extended his 1994 LISP in his 2001 book, “Exploring Randomness.” The decision to 
use Chaitin’s older version of LISP and make changes to the text of “The Limits of Mathematics” are for 
artistic purposes with permission from the author. 
The second section realizes symbol-by-symbol the program that approximates Omega. Distinct (primarily 
short) sounds represent each symbol and the entrances and exits of various continuous sounds demarcate 
the expressions in the program. Thus, the nesting of subroutines within the program completely 
determines the form of the music. 
 

-michael winter (la; 2010) 
 
 
 
Performance Instructions: 
 
Dynamics and Setting: 
All individual instruments should sound at a uniform dynamic; each sound heard clearly without being 
loud. Sound sources should be distributed throughout the performance space. Realizations should be 
primarily concerned with the phenomenon of sound itself. 
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Instrumentation:  
Part 0 comprises a battery of 26 different sounds indicated by number. 0 and 1 indicate pitched sounds 
(pitch class – D; any fixed octave) from a percussion instrument with long natural decay. 0 indicates 
to let ring. 1 indicates a punctuated tone (quickly stopped). Sounds 0 and 1 occur most frequently. 
When possible, distribute these occurrences to a set of a particular instrument (such as 17 chimes of 
the same pitch located throughout the performance space) such that: when several 0s occur in 
succession, each sound comes from a different source; when a 0 is followed shortly by a 1, the same 
source produces both sounds (that is, the tone initially allowed to ring is stopped by the punctuated 
tone that follows). Each remaining sound-number in Part 0 indicates a distinct, non-pitched sound that 
is short and/or has a short natural decay. Distribute the sources of these sounds throughout the 
performance space to the extent possible. Each part from 1 through 17 must be distinguished uniquely by 
timbre and/or pitch. One performer may play several parts with double-stops, multiple instruments, 
polyphonic synthesized or recorded sounds, etc.. Assign each part played by a pitched instrument a 
distinct pitch derived from one of the first seventeen primes of the harmonic series of D. Note names 
with cent deviations (one hundredth of a tempered semitone) are provided above the charts in Section 2. 
Performers may sound a part’s respective pitch-class in any octave and may change octaves for each new 
tone. 
 
Section 1 (optional): 
The text is read in a paced speaking voice with silences of varying lengths between each paragraph 
(delimited by double line breaks). Varying subsets of the ensemble accompany each paragraph starting 
and ending precisely with the speaker. The performers of Part 0 accent the start and end of each 
paragraph with sounds 0 and 1, respectively. Per paragraph, the accompanying sound should seem as a 
single gestalt. Sounds should generally by continuous however percussion instruments may choose to 
sound a series of punctuated attacks repeated quickly at individual tempi. Individual instruments may 
enter and exit freely so long as an overall continuity remains. Symbols bound by brackets are not 
spoken. Instead, a tone corresponding to the sound-number of Part 0 (given in the left column) sounds. 
Precede and succeed this tone with silence. The paragraph is interpreted to start on the following 
line. A word in quotes coincides with the sounding of a tone corresponding to the sound-number of Part 
0 (also given in the left column). Underlined words are neither spoken nor accompanied. Performers of 
Part 0 must play when indicated by brackets or quotes in the text but may also contribute to the more 
continuous accompanying sound of each paragraph. 
 
Section 2: 
Part 0 is notated as a list of pairs. The first number is a time-unit within which a sound indicated by 
the second number occurs. Two charts provide options for the remaining 17 parts (organized by columns). 
The column contains a list of time-unit pairs for the start and end times of each tone. The tones must 
enter and exist precisely with the sound in Part 0 occurring in the same time-unit. The ensemble may 
uniformly scale the time-units by any amount. Note that in Option 1, the higher the part number, the 
shorter the general durations of tones. Option 2 sacrifices this for parts that are more uniformly 
active. More traditionally notated scores are also provided for both options. An appendix gives the 
list of time pairs without part assignment. The ensemble may explore distributing the tones in other 
ways but it will always take at least 17 parts. 
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Section 1:
 

Part 0: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0 
 

 
 

1 
 
 
 

2 

Speaker with Accompaniment 
 
Omega is formally defined as the probability that a computer program with bits generated by   
tosses of a fair coin halts on a universal self-delimiting computer. Since no algorithm can 
determine whether an arbitrary computer program halts, Omega is maximally complex and 
incomputable. However, there exists a computation that approximates Omega with increasing 
accuracy over longer and longer amounts of time. We outline this method in an altered and 
extended version of the computer programming language, LISP. 
 
LISP more closely resembles fundamental subjects such as set theory and logic than a 
traditional programming language. The LISP formalism consists of several primitive functions 
and a set of rules for defining more complex functions from the initially given primitives. 
LISP functions are technically known as partial recursive functions. Data and function 
definitions in LISP consist of S-expressions. S stands for symbolic. 
 
S-expressions are lists consisting of start and end delimiters binding zero or more elements, 
which may be atoms or sublists. Formally, the class of S-expressions is the union of the class 
of atoms and the class of lists.  
 
The fundamental semantic concept of LISP is that of the value of an S-expression in a given 
environment. An environment consists of an associated list in which variables (atoms) and 
their values (S-expressions) alternate. If a variable appears several times, only its first 
value is significant. If a variable does not appear in the environment, then it is a literal 
constant in that it itself is its value. 
 
LISP reserves the following symbols given with a name, the number of arguments (if applicable) 
and an explanation. All but the first four represent primitive functions. 
 
Symbol: [(] 
Name: Start-Delimiter 
Explanation: Denotes the start of an S-expression. 
 
Symbol: [)] 
Name: End-Delimiter 
Explanation: Denotes the end of an S-expression. 
 
Symbol: [1] 
Name: True 
Explanation: Denotes the value true. 
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9 
 
 
 
 
 

Symbol: [0] 
Name: False 
Explanation: Denotes the value false. 
 
Symbol: [’] 
Name: Quote or Literally 
Arguments: 1 
Explanation: The result of applying this function is the unevaluated argument expression. 
 
Symbol: [.] 
Name: Atom 
Arguments: 1 
Explanation: The result of applying this function to an argument is true or false depending on 
whether or not the argument is an atom. 
 
Symbol: [=] 
Name: Equal 
Arguments: 2 
Explanation: The result of applying this function is true or false depending on whether or not 
the two arguments are the same S-expression. 
 
Symbol: [+] 
Name: Head" or "First 
Arguments: 1 
Explanation: The result of applying this function to an atom is the atom itself. The result of 
applying this function to a non-empty list is the first element of the list. 
 
Symbol: [-] 
Name: Tail" or "Rest 
Arguments: 1 
Explanation: The result of applying this function to an atom is the atom itself. The result of 
applying this function to a non-empty list is the remaining elements after deletion of the 
first element. Thus, the tail of an (n + 1)-element list is an n-element list. 
 
Symbol: [*] 
Name: Join 
Arguments: 2 
Explanation: If the second argument is not a list, then the result of applying this function 
is the first argument. If the second argument is an n-element list, then the result of 
applying this function is the (n + 1)-element list whose head is the first argument and whose 
tail is the second argument. 
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10 
 
 
 
 
 
 

11 
 
 
 
 
 
 

12 
 
 
 
 
 
 

13 
 
 
 
 
 
 
 
 
 
 

14 

Symbol: [,] 
Name: Display 
Arguments: 1 
Explanation: The result of applying this function is its argument and is used to display 
intermediate results. In other words, this is an identity function. It is the only primitive 
function with a side-effect, which is to display the argument. 
 
Symbol: [/] 
Name: If-then-else 
Arguments: 3 
Explanation: If the first argument is not false, then the result is the second argument. If 
the first argument is false, then the result is the third argument. The argument that is not 
selected is not evaluated. 
 
Symbol: [!] 
Name: Evaluate 
Arguments: 1 
Explanation: The expression that is the value of the argument is evaluated in an empty 
environment. This is the only primitive function that is a partial rather than a total 
function. 
 
Symbol: [?] 
Name: Try or Depth-Limited Evaluation 
Arguments: 2 
Explanation: The expression that is the value of the second argument is evaluated in an empty 
environment. The number of elements of the first argument gives a time limit (that is, a 
maximum number of computations equal to the length of the list or zero if the first argument 
is not a list). The time limit actually limits the depth of the evaluation. If the evaluation 
completes within the time limit, the value returned is a list whose sole element is the value 
of the value of the second argument. If the evaluation is not completed within the time limit, 
the value returned is the atom for “Try.”  
 
Symbol: [&] 
Name: Define Function or Lambda 
Arguments: 2  
Explanation: Treated essentially as a primitive function, this atom is used to create a 
defined function where the first argument is a list of variables and the second argument is 
the body of the function definition. Note that all other (non-reserved) symbols may be used as 
variables in a defined function. 
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We extend LISP to define a self-delimiting universal computer. The computer’s program appears 
on its tape as a binary representation of a LISP expression. Note that the program must be 
self-delimiting because the S-expression must have balanced delimiters. 
 
We redefine “Try” by adding an argument to be able to initially place information on the 
computer’s tape. The three arguments are as follows. The first argument, the depth-limit, is 
altered from the original LISP definition: if it is a non-null atom, then there is no depth 
limit; if it is the empty list, there is zero depth limit (that is, no function calls or re-
evaluations); if it is an n-element list, there is a depth limit of n. The second argument is 
as before: the expression to be evaluated as long as the depth limit is not exceeded. The new 
third argument is a list of bits to be used as the computer’s program tape. 
 
The value returned by “Try” is also changed. If the computation terminates normally, the first 
element of the returned value is a list with only one element, which is the result of the 
computation. If the evaluation of the second argument aborts, the first element of the 
returned value is the atom for “Evaluate” after an attempt to read a non-existent bit from the 
tape or the atom for “Try” when the number of computations exceeds the depth limit. The rest 
of the returned value is a stack of all the arguments to the primitive function “Display” 
encountered during the evaluation of the second argument. 
 
We reserve two more symbols for primitives that could be programmed but are built-in to help 
conveniently define and efficiently run a self-delimiting universal computer.  
 
Symbol: [^] 
Name: Append 
Arguments: 2 
Explanation: The result of this function is the concatenation of its two arguments into a 
single list. 
 
Symbol: [%] 
Name: Read-Expression 
Explanation: Read an entire LISP expression from the computer’s tape. This function is the 
only way that information on the computer’s tape can be accessed. It must be implemented in a 
self-delimiting fashion because no algorithm can search for the end of the tape and then use 
the length of the tape as data in the computation. If an algorithm attempts to read a bit that 
is not on the tape, the algorithm aborts. That is, this function explodes if the tape is 
exhausted, killing the computation. 
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In conclusion, permissiveness in our LISP is achieved because functions with extra arguments 
are evaluated but ignored and empty lists are supplied for missing arguments. There are no 
erroneous expressions; only expressions that never return a value because the interpreter goes 
into an infinite loop. 
 
Approximating Omega: 
 

 
 
Section 2: 
 
(('(&(V)(('(&(A)(('(&(R)(('(&(W)(W('(O)))))('(&(n)(*0(*.(R(Vn())n))))))))('(&(xy)(/(.x)(/(.y)()(*0(Rx(-
y))))(^(R(-x)(y))(*(+x)()))))))))('(&(xyz)(/(.x)(/(.y)(/z('(1))())(A('(0))yz))(/(.y)(Ax('(0))z)(*(=(+x) 
(=(+y)z))(A(-x)(-y)(/(+x)(/(+y)1z)(/(+y)z0)))))))))))('(&(xy)(/(.x)(/(.(+(?n('(!(%)))y)))()('(1)))(A(V( 
-x)(*0y))(V(-x)(*1y))0))))) 
 
Above is the program approximating Omega given in its ascii representation. Note that the symbol O 
represents a list of 1s with a length that determines how many bits of the binary expansion of Omega 
are approximated. 
 
Part 0 (time-unit, sound): 
 
 0,     0 
 1,     0 
 2,     4 
 3,     0 
 4,    14 
 5,     0 
 6,    17 
 7,     1 
 8,     0 
 9,     0 
 10,    4 
 11,    0 
 12,   14 
 13,    0 
 14,   18 
 15,    1 
 16,    0 
 17,    0 
 18,    4 
 19,    0 
 20,   14 
 21,    0 
 22,   19 
 23,    1 
 24,    0 
 25,    0 

 26,    4 
 27,    0 
 28,   14 
 29,    0 
 30,   20 
 31,    1 
 32,    0 
 33,   20 
 34,    0 
 35,    4 
 36,    0 
 37,   21 
 38,    1 
 39,    1 
 40,    1 
 41,    1 
 42,    1 
 43,    0 
 44,    4 
 45,    0 
 46,   14 
 47,    0 
 48,   25 
 49,    1 
 50,    0 
 51,    9 

 52,    3 
 53,    0 
 54,    9 
 55,    5 
 56,    0 
 57,   19 
 58,    0 
 59,   17 
 60,   25 
 61,    0 
 62,    1 
 63,    1 
 64,   25 
 65,    1 
 66,    1 
 67,    1 
 68,    1 
 69,    1 
 70,    1 
 71,    1 
 72,    1 
 73,    0 
 74,    4 
 75,    0 
 76,   14 
 77,    0 

 78,   22 
 79,   23 
 80,    1 
 81,    0 
 82,   11 
 83,    0 
 84,    5 
 85,   22 
 86,    1 
 87,    0 
 88,   11 
 89,    0 
 90,    5 
 91,   23 
 92,    1 
 93,    0 
 94,    1 
 95,    0 
 96,    9 
 97,    3 
 98,    0 
 99,   19 
 100,  22 
 101,   0 
 102,   8 
 103,  23 

 104,   1 
 105,   1 
 106,   1 
 107,   1 
 108,   0 
 109,  15 
 110,   0 
 111,  19 
 112,   0 
 113,   8 
 114,  22 
 115,   1 
 116,   0 
 117,   8 
 118,  23 
 119,   1 
 120,   1 
 121,   0 
 122,   9 
 123,   0 
 124,   7 
 125,  22 
 126,   1 
 127,   0 
 128,   1 
 129,   1 

 130,   1 
 131,   1 
 132,   1 
 133,   1 
 134,   1 
 135,   1 
 136,   1 
 137,   0 
 138,   4 
 139,   0 
 140,  14 
 141,   0 
 142,  22 
 143,  23 
 144,  24 
 145,   1 
 146,   0 
 147,  11 
 148,   0 
 149,   5 
 150,  22 
 151,   1 
 152,   0 
 153,  11 
 154,   0 
 155,   5 

 156,  23 
 157,   1 
 158,   0 
 159,  11 
 160,  24 
 161,   0 
 162,   4 
 163,   0 
 164,   2 
 165,   1 
 166,   1 
 167,   0 
 168,   1 
 169,   1 
 170,   0 
 171,  18 
 172,   0 
 173,   4 
 174,   0 
 175,   3 
 176,   1 
 177,   1 
 178,  23 
 179,  24 
 180,   1 
 181,   1 

 182,   0 
 183,  11 
 184,   0 
 185,   5 
 186,  23 
 187,   1 
 188,   0 
 189,  18 
 190,  22 
 191,   0 
 192,   4 
 193,   0 
 194,   3 
 195,   1 
 196,   1 
 197,  24 
 198,   1 
 199,   0 
 200,   9 
 201,   0 
 202,   6 
 203,   0 
 204,   7 
 205,  22 
 206,   1 
 207,   0 

 208,   6 
 209,   0 
 210,   7 
 211,  23 
 212,   1 
 213,  24 
 214,   1 
 215,   1 
 216,   0 
 217,  18 
 218,   0 
 219,   8 
 220,  22 
 221,   1 
 222,   0 
 223,   8 
 224,  23 
 225,   1 
 226,   0 
 227,  11 
 228,   0 
 229,   7 
 230,  22 
 231,   1 
 232,   0 
 233,  11 

 234,   0 
 235,   7 
 236,  23 
 237,   1 
 238,   2 
 239,  24 
 240,   1 
 241,   0 
 242,  11 
 243,   0 
 244,   7 
 245,  23 
 246,   1 
 247,  24 
 248,   3 
 249,   1 
 250,   1 
 251,   1 
 252,   1 
 253,   1 
 254,   1 
 255,   1 
 256,   1 
 257,   1 
 258,   1 
 259,   1 

 260,   0 
 261,   4 
 262,   0 
 263,  14 
 264,   0 
 265,  22 
 266,  23 
 267,   1 
 268,   0 
 269,  11 
 270,   0 
 271,   5 
 272,  22 
 273,   1 
 274,   0 
 275,  11 
 276,   0 
 277,   5 
 278,   0 
 279,   7 
 280,   0 
 281,  13 
 282,  25 
 283,   0 
 284,   4 
 285,   0 

 286,  12 
 287,   0 
 288,  16 
 289,   1 
 290,   1 
 291,   1 
 292,  23 
 293,   1 
 294,   1 
 295,   1 
 296,   0 
 297,   1 
 298,   0 
 299,   4 
 300,   0 
 301,   2 
 302,   1 
 303,   1 
 304,   1 
 305,   0 
 306,  18 
 307,   0 
 308,  17 
 309,   0 
 310,   8 
 311,  22 

 312,   1 
 313,   0 
 314,   9 
 315,   3 
 316,  23 
 317,   1 
 318,   1 
 319,   0 
 320,  17 
 321,   0 
 322,   8 
 323,  22 
 324,   1 
 325,   0 
 326,   9 
 327,   2 
 328,  23 
 329,   1 
 330,   1 
 331,   3 
 332,   1 
 333,   1 
 334,   1 
 335,   1 
 336,   1 
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Assign each part played by a pitched instrument a distinct pitch class from the following:  
(D+0, A+2, F#-14, C-31, G#-49, A#+41, D#+5, F-2, G#+28, C+30, C#+45, F-49, F#+29, G+12, A-34, B-26, C#-41) 
 
Option 1 (start time-unit, end-time unit):  

 
Option 2 (start time-unit, end-time unit): 

 
 
Appendix 
Sustained Tones (start time-unit, end-time unit):  
((0,336),(1,259),(3,258),(5,7),(8,257),(9,136),(11,135),(13,15),(16,134),(17,72),(19,71),(21,23), 
 (24,70),(25,42),(27,41),(29,31),(32,40),(34,39),(36,38),(43,69),(45,68),(47,49),(50,67),(53,66), 
 (56,65),(58,63),(61,62),(73,133),(75,132),(77,80),(81,131),(83,86),(87,107),(89,92),(93,94),(95,106), 
 (98,105),(101,104),(108,130),(110,120),(112,115),(116,119),(121,129),(123,126),(127,128),(137,256), 
 (139,255),(141,145),(146,254),(148,151),(152,181),(154,157),(158,169),(161,166),(163,165),(167,168), 
 (170,180),(172,177),(174,176),(182,253),(184,187),(188,198),(191,196),(193,195),(199,252),(201,215), 
 (203,206),(207,214),(209,212),(216,251),(218,221),(222,225),(226,250),(228,231),(232,240),(234,237), 
 (241,249),(243,246),(260,335),(262,334),(264,267),(268,333),(270,273),(274,304),(276,295),(278,294), 
 (280,293),(283,291),(285,290),(287,289),(296,297),(298,303),(300,302),(305,332),(307,318),(309,312), 
 (313,317),(319,330),(321,324),(325,329)); 
 

Part 1 Part 2 Part 3 Part 4 Part 5 Part 6 Part 7 Part 8 Part 9 Part 10 Part 11 Part 12 Part 13 Part 14 Part 15 Part 16 Part 17 
0,336 1,259 

260,335 
3,258 

262,334 
5,7 

8,257 
264,267 
268,333 

9,136 
137,256 
270,273 
274,304 
305,332 

11,135 
139,255 
276,295 
296,297 
298,303 
307,318 
319,330 

13,15 
16,134 
141,145 
146,254 
278,294 
300,302 
309,312 
313,317 
321,324 
325,329 

17,72 
73,133 
148,151 
152,181 
182,253 
280,293 

19,71 
75,132 
154,157 
158,169 
170,180 
184,187 
188,198 
199,252 
283,291 

21,23 
24,70 
77,80 
81,131 
161,166 
167,168 
172,177 
191,196 
201,215 
216,251 
285,290 

25,42 
43,69 
83,86 
87,107 
108,130 
163,165 
174,176 
193,195 
203,206 
207,214 
218,221 
222,225 
226,250 
287,289 

27,41 
45,68 
89,92 
93,94 
95,106 
110,120 
121,129 
209,212 
228,231 
232,240 
241,249 

29,31 
32,40 
47,49 
50,67 
98,105 
112,115 
116,119 
123,126 
127,128 
234,237 
243,246 

34,39 
53,66 

101,104 

36,38 
56,65 

58,63 61,62 

Part 1 Part 2 Part 3 Part 4 Part 5 Part 6 Part 7 Part 8 Part 9 Part 10 Part 11 Part 12 Part 13 Part 14 Part 15 Part 16 Part 17 
0,336 1,259 

305,332 
3,258 

300,302 
5,7 

34,39 
50,67 
83,86 

108,130 
154,157 
184,187 
216,251 
278,294 

8,257 
298,303 

9,136 
172,177 
203,206 
228,231 
262,334 

11,135 
170,180 
207,214 
234,237 
264,267 
307,318 

13,15 
36,38 
47,49 
61,62 
73,133 
163,165 
188,198 
226,250 
276,295 

167,168 
193,195 
218,221 
243,246 
270,273 
309,312 

17,72 
98,105 
121,129 
152,181 
209,212 
232,240 
268,333 

19,71 
95,106 
123,126 
146,254 
285,290 
319,330 

21,23 
43,69 
89,92 

110,120 
141,145 
174,176 
201,215 
241,249 
274,304 

24,70 
93,94 

112,115 
137,256 
296,297 

25,42 
58,63 
75,132 
161,166 
191,196 
222,225 
260,335 

27,41 
56,65 
77,80 

101,104 
116,119 
139,255 
287,289 
313,317 

29,31 
45,68 
87,107 
127,128 
148,151 
182,253 
283,291 
321,324 

32,40 
53,66 
81,131 
158,169 
199,252 
280,293 
325,329 
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Part 0

Part 1

Part 2

Part 3

Part 4

Part 5

Part 6

Part 7

Part 8

Part 9

Part 10

Part 11

Part 12

Part 13

Part 14

Part 15

Part 16

Part 17

œ0

Approximating Omega
Section 2; Option 1
Assign each part from 1 through 17 played by a pitched instrument a distinct pitch class from the following (each tone may be played in any octave): 
(D+0, A+2, F#-14, C-31, G#-49, A#+41, D#+5, F-2, G#+28, C+30, C#+45, F-49, F#+29, G+12, A-34, B-26, C#-41)

œ0

*Part 0: The number above each note indicates which sound to play. The sound may occur at any point in the time unit (or measure).
*Parts 1 through 17: The numbers above the starts and ends of each note indicate the time-unit (or measure) of entry or exit. These should coincide presicely 
  with the sound occuring in part 1, which may occur at any point in the time-unit. Note that measure numbers start from index 0.

œ0
œ
œ1

œ4
œ
œ

œ0
œ
œ
œ3

œ14
œ
œ
œ

œ0
œ
œ
œ
œ5

œ17
œ
œ
œ
œ

œ1
œ
œ
œ
œ7

œ0
œ
œ
œ
œ8

œ0
œ
œ
œ
œ
œ9

10

œ4
œ
œ
œ
œ
œ

œ0
œ
œ
œ
œ
œ
œ11

œ14
œ
œ
œ
œ
œ
œ

œ0
œ
œ
œ
œ
œ
œ
œ13

œ18
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œ
œ
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œ
œ
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œ
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œ
œ
œ
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œ
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œ
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œ23

œ0
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œ
œ
œ24

œ0
œ
œ
œ
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œ
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œ
œ25

œ4
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œ
œ
œ
œ
œ
œ
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œ0
œ
œ
œ
œ
œ
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œ
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Part 0

Part 1

Part 2

Part 3

Part 4

Part 5

Part 6

Part 7

Part 8

Part 9

Part 10

Part 11

Part 12

Part 13

Part 14

Part 15

Part 16

Part 17

40
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Approximating Omega
Section 2; Option 2
*Assign each part from 1 through 17 played by a pitched instrument a distinct pitch-class from the following (each tone may be played in any octave): 
  (D+0, A+2, F#-14, C-31, G#-49, A#+41, D#+5, F-2, G#+28, C+30, C#+45, F-49, F#+29, G+12, A-34, B-26, C#-41)

œ0

*Part 0: The number above each note indicates which sound to play. The sound may occur at any point in the time unit (or measure).
*Parts 1 through 17: The numbers above the starts and ends of each note indicate the time-unit (or measure) of entry or exit. These should coincide presicely 
  with the sound occuring in part 1, which may occur at any point in the time-unit. Note that measure numbers start from index 0.
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A.11 pedal, triangle machine, and (perhaps) coda

pedal, triangle machine, and (perhaps) coda consists of a long drone inter-

spersed with with short flurries of percussion activity with an optional computer synthe-

sized coda at the end. The triangle parts are generated by following the state sequences

of Turing machines chosen at random. The current state of two Turing machines deter-

mine the duration between each attack and whether or not the triangle is played opened

or stopped.

While several triangle parts were generated, only one is presented here. Each

part was chosen based on whether I perceived them as chaotic for the duration of

the part. If the Turing machine quickly started looping or repeating, I would discard

that part choosing only runs that seemed random. Here the metric is essentially my

perception of randomness. Since I was only interested in the first several hundred states

of the output, any of these machines may very well get in a loop after several more

states beyond where I was looking.
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pedal, triangle machine, and (perhaps) coda 

for casey thomas anderson 

 

performers distributed throughout the space to the extent possible. 17 minutes or 
more in total. if performed in a very large space, or in several rooms, run 
multiple, independent realizations simultaneously throughout the space. 

 

pedal: 

a drone with a loud constancy throughout the piece. preferably low horns 
(primarily trombones and tubas, if possible) with staggered breaths. pitch-class 
‘a’ with each tone slightly detuned. (the start of the drone may be accented with 
a percussive attack that decays slowly. the end may be accented with a percussive 
attack that is punctuated.) 

auxiliary pedal (optional): 

for 5 or more pitched or unpitched sustaining sounds that blend with, and 
subtly color, the drone. divide the entire length of the piece into equal 
sections greater than 3 minutes. a different group of 3 or (preferably) more 
performers play throughout each section as follows: sound a tone followed by 
silence; then repeat the sound and silence, shortening or lengthening the 
duration of one or the other by a small amount. the duration of each 
sound/silence should be between 3 and 11 seconds (perhaps quantized to a strict 
time-subdivision scheme). each pitched sound must be an octave equivalent of a 
unique prime harmonic (no doubling pitch-classes) of an ‘a,’ with each tone 
slightly detuned. each unpitched sound must have a distinct timbre from all 
others. (the start and end of each section may be accented with a percussive 
attack that is punctuated.) 

 

triangle machine: 

each occurrence consists of 3, 5, or 7 performers each playing a triangle (or 
triangle-like instrument, preferably of the same type/sound for all) and reading 
from a unique part (provided on the following pages). the players start together 
and maintain a strict tempo throughout such that a measure lasts 1 to 2 seconds 
(thus each occurrence lasts 2 to 4 minutes in total). a cross indicates that the 
triangle is played stopped. a circle above a note indicates that the triangle is 
played open and allowed to decay naturally till the next attack or silence 
(despite any rests that follow).  

to occur at least twice during the course of the piece with each occurrence 
separated by at least 3 minutes (preferably more). the drone should sound at least 
3 minutes (preferably more) before and after the first and last occurrence. 

loud. heard equally with, if not slightly above, the drone. 

 

coda (optional): 

to occur at least 3 minutes after the last triangle machine occurrence and ending 
shortly before the drone halts. the coda consists of a 3 minute texture 
synthesized by a custom-made computer program. the application is designed for 
multichannel playback through as many speakers as possible distributed throughout 
the space. the texture should be subtly noticeable; blending with the drone. 

 
 
 
 

-michael winter (los angeles; february, 2010) 
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