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Abstract In this paper, we examine a number of minimal change musical morpholo-
gies. Each morphology has an analogous representation in mathematics. Our math-
ematical objects of study are Gray codes, de Bruijn sequences, aperiodic necklaces,
disjoint subset pairs, and multiset permutations with musically motivated constraints
that result in several open problems.
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1 Introduction and Preliminaries

Several different minimalist trends exist in art and music. In this paper, we focus
on minimal change musical morphologies where the word “minimal” primarily de-
notes “minimal change” between adjacent elements in a given morphology. Each
morphology has an analogous representation in mathematics. Our mathematical ob-
jects of study are Gray codes, de Bruijn sequences, aperiodic necklaces, disjoint
subset pairs, and multiset permutations with musically motivated constraints that
result in several open problems.

First, we discuss a taxonomy of “morphological constraints” used to contextual-
ize the definition of each morphology. Next, we review previous research in order
to show the genesis of our current formalization. Section 2 focusses on examples
of minimal change musical morphologies and the open mathematical problems that
result from musically motivated constraints on the analogous mathematical repre-
sentations. We conclude with an overview of the open problems and suggestions for
further research.
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1.1 Scope and complexity of morphological constraints

In this paper, the morphologies and their analogous mathematical representations
are defined by a subset of four types of morphological constraints: Combinatorial
Constraints (CC), Local Morphological Constraints (LMC), Global Morphological
Constraints (GMC), and Optimal Global Morphological Constraints (OGMC). This
taxonomy shows a hierarchy of scope (from elements of a morphology to its large-
scale form) and computational complexity (from easy to difficult to compute). The
complexity at each hierarchical level is based on the satisfaction of that constraint
in conjunction with all lower-level constraints.

1.1.1 Combinatorial Constraints (CC)

A CC is a constraint that defines all the elements of a morphology. As no further
constraints are imposed (between adjacent/pairwise elements or among sets and se-
quences of elements), computing a set of elements defined by a CC is generally
easy/efficient. For example, in Section 2.1.1, we discuss a morphology where the
CC is that each element must be a subset of a set of n sounds. The set of all sub-
sets (the powerset) can be represented mathematically by all binary words of size n
where each bit position corresponds to one of the sounds.

1.1.2 Local Morphological Constraints (LMC)

A LMC is a constraint at the next-higher hierarchical level; i.e., between adjacent
elements in a morphology. A morphology that satisfies a LMC with no higher-level
constraints is generally easy to compute. However, the computation is likely to take
more time and resources than generating a set of elements using a CC alone unless
the known fastest algorithm that satisfies the CC also satisfies the LMC. Continuing
with the example that will be discussed in Section 2.1.1, the LMC is that from subset
to subset, only one sound can be added or removed; or framed mathematically, only
one bit can flip from word to word.

1.1.3 Global Morphological Constraints (GMC)

A GMC constrains a statistical property of the morphology. For most of the mor-
phologies detailed below, the GMC is that each element defined by the CC occurs
only once; e.g., any given subset of sounds or binary word is never repeated. Unless
the known fastest algorithm that satisfies all lower-level constraints also satisfies the
GMC, finding a morphology that satisfies a GMC is harder than just a LMC and/or
CC. Often, the difficulty increases exponentially with respect to the number of ele-
ments defined by the CC. For example, some of our morphologies can be generated
by finding Hamiltonian paths (where each vertex is traversed only once) in represen-
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tative graphs. Finding Hamiltonian paths is known to be NP-complete for arbitrary
graphs as brute-force search times typically explode exponentially with the size of
the graph. Section 1.1.5 further explicates this taxonomy’s relation to graph theory.

1.1.4 Optimal Global Morphological Constraints (OGMC)

An OGMC constrains sets or sequences of three or more elements in the morphol-
ogy (as opposed to just adjacent elements as with the LMC) thus defining a sub-
set of morphologies satisfying all lower-level constraints. In most of the examples
in Section 2, the OGMC s are satisfied such that the order of elements minimizes
or maximizes some feature/characteristic of the morphology (hence the use of the
word “optimal”); e.g., codes that have maximally uniform, long run-lengths and se-
quences where the running sum is minimized. Depending on the OGMC, finding
a satisfactory morphology can be extremely hard with complexity on the order of
solving difficult games and puzzles.

1.1.5 Relation to graph theory and Constraint Programming (CP)

Two methods used to generate some of the morphologies detailed in this paper have
cogent relations and near-analogs to the above taxonomy: finding paths in represen-
tative graphs and searches using Constraint Programming (CP; see [20]).

A graph with vertices defined by CCs and edges induced by LMC:s is essentially
a structural representation of the morphology. The graph can be used to generate the
morphology by finding a path that satisfies any defined GMCs and OGMCs. Gener-
ating morphologies using this technique illustrates an important, if not fundamental,
link between morphology (or shape) and structure.

In CP, a solver searches for a solution that satisfies a programmed set of “bi-
nary” and/or “global” constraints applied over a “domain” by optimizing a set of
“objectives” (minimizing or maximizing a set of functions). A domain in CP is
equivalent to a set of elements defined by a CC. Binary constraints are similar to
LMC:s as they both involve only two variables. Global constraints and GMCs relate
because they both involve more than two variables and are constraints at a hierar-
chical level higher than binary constraints and LMCs, respectfully. However, global
constraints also relate to OGMCs as both constrain sequences or sets of elements.
Thus, a global constraint could be considered as something between a GMC and an
OGMC. Notwithstanding the connection between global constraints and OGMCs,
CP objectives clearly relate to OGMCs because of the optimization process.

To summarize, Table 1 shows the morphological constraint taxonomy in relation
to hierarchical scope, difficulty, and analogs to graph theory and CP.
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Table 1: Summary of morphological constraint taxonomy.

Constraint || Hierarchical Scope | Difficulty | Graph Theory CP

CC elemental easiest vertices domain
LMC pairwise easy edges binary constraint
GMC global hard path global constraint
OGMC global optima hardest optimal path objective

1.2 Precedence of musical thinking with respect to morphological
constraints

The two pieces described in this section exemplify a compositional process where
musical morphologies are defined by morphological constraints. Both have well-
defined CCs, LMCs, and GMCs, but do not have OGMCs. While several of the
pieces described later have OGMCs, the concept was theoretically formalized only
recently for the purposes of this paper.

The mathematical implications of the following two examples are investigated
more thoroughly in “Chordal and timbral morphologies using Hamiltonian cy-
cles” [1], where the authors show the conditions that admit a Hamiltonian path or
cycle! in representative graphs derived and generalized from the pieces. Section 2
is a focussed extension of the ideas in the aforementioned article: focussed in that
we look exclusively at minimal change morphologies and extended in that we also
look at examples with OGMC:s. “Chordal and timbral morphologies using Hamilto-
nian cycles” also provides a historical context connecting this work to the work of
James Tenney and Larry Polansky among others (specifically, Tenney’s definition
of form as shape and structure in Meta+Hodos [26] and Polansky’s definitions of
“morphological metrics” [17]). These writings along with the author’s dissertation
“Structural Metrics: an epistemology” [29] further illustrate the genesis of compo-
sitional thinking detailed throughout this paper.

1.2.1 Maximally smooth chordal cycles

In a “maximally smooth cycle”, as defined by Richard Cohn [7], one part moves
by a semitone or whole step while the other parts remain on the same pitch. Tom
Johnson’s piece Trio (2005)? is a variant of this idea that exemplifies well-defined
morphological constraints. In 7rio, each pitch in a four-octave chromatic set is rep-
resented by a number 0 to 48 where middle C equals 24. The musical morphology
enumerates through all three-note chords satisfying the CC that the numbers repre-

! A Hamiltonian cycle is basically the same as a Hamiltonian path except it returns to the start
vertex.

2 Score to this piece available at http: //www.editions75.com (accessed January 2015).
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senting the pitches within each chord are distinct integer partitions without repeti-
tions of 72. The LMC is that from chord to chord, one pitch must remain the same
while the other pitches move by a semitone in contrary motion. The GMC is that
each chord occurs only once. The morphology is analogous to a Hamiltonian path
(which by definition satisfies the GMC) on a graph where the vertices represent the
chords defined by the CC and edges are induced by the LMC. Figure 1 shows the
first system of the score to Trio.

Trio
288 three-note chords with sums of 72 (middle C = 24)

Tom Johnson

gliss. ad libitum

Fig. 1: Excerpt from score of Trio.

1.2.2 Maximal change timbral morphologies

In the author’s piece maximum change (2010),? the elements are all timbral possi-
bilities of a chord with 4 pitches using 4 instruments assuming that each instrument
can play up to all of the pitches at once (the CC), which framed mathematically are
all 4-tuples where the position in the tuple represents the pitch to which an instru-
ment, represented by a number at that position, is assigned. The LMC is that from
chord to chord, each pitch is played by a different instrument; or mathematically,
from tuple to tuple, each position is assigned a different number. That is, the same
chord is repeated but the mapping of instruments to pitches changes as maximally
as possible. The GMC is that each timbral possibility occurs only once. The mor-
phology is analogous to a Hamiltonian path in a graph where the vertices represent
the timbral possibilities (or mappings of instruments to pitches) defined by the CC
and edges are induced by the LMC.* Figure 2 shows the first 10 measures of the
score to maximum change.

3 Score to all the author’s pieces available at ht tp: //www.unboundedpress.org (accessed
January 2015). Unless otherwise specified, all works discussed are that of the author.

4 This is essentially the opposite of the types of morphologies discussed in this paper. However,
in [1], the problem and corresponding graph are generalized such that the number of elements that
stay the same from tuple to tuple is specified. maximum change is a specific instance where the
number of elements that stay the same from tuple to tuple is 0.
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Fig. 2: Excerpt from score of maximum change.

2 Minimal Change Musical Morphologies: Applications and
Resulting Mathematical Problems

2.1 Gray codes

A Gray code (after Frank Gray [11]) is an enumeration of all binary words of a given
length n (the CC) such that only one bit changes from word to word (the LMC) and
each word occurs only once (the GMC). We reserve a discussion of OGMCs for
the following subsection. For a comprehensive overview of Gray codes, see Carla
Savage’s “A survey of combinatorial Gray codes” [21].

2.1.1 Maximally balanced, maximally uniform long-run Gray codes

The musical composition gray codes (2009) is an exploration of all subsets of a set
of sounds such that the overall sound changes as minimally/gradually as possible
over time. Each instrument (or sound) follows one bit position in a Gray code. An
instrument is sounding when ‘on’ (or 1) and not when ‘off” (or 0). The score gives
the following description of an OGMC desired to generate a version of the piece.

“Ideally, a particular type of Gray code is desired to achieve this effect [of minimal change].
That is, a Gray code where the standard deviation of all run-lengths plus the standard devi-
ation of bit flips across the positions is as close to 0 as possible.”

The score then includes a version for orchestra with an 8-bit Gray code. Every
subset of instruments from 8 groups—flutes, oboes, clarinets, bassoons, horns, vi-
braphones, strings I (violins and violas), and strings II (cellos and basses)—sounds
together once at some point in the piece. A realization is played exclusively on one
pitch with a gradually changing overall timbre.
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Fig. 3: Examples of 8-bit Gray codes from Donald Knuth’s The Art of Computer Programming. a)
standard; b) balanced; c) complimentary; d) long-run; e) nonlocal; f) monotonic; g) trend-free.
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While Gray codes are defined by the LMC that only one bit changes from word
to word, standard Gray codes are not at all balanced (in that each bit position in the
enumeration has similarly many bit flips as all others). The musical consequence of
using an unbalanced code is that some sounds will come in and out more frequently
than others. Also, run-lengths may vary tremendously in standard Gray codes. For
examples of both these factors, see Figure 3a as compared to Figure 3b and/or Fig-
ure 3d from Donald Knuth’s The Art of Computer Programming [13]. The OGMC
given in the score aims to ensure that each part changes as infrequently as all others
by assuming that balanced Gray codes generally have uniformly long run-lengths.

Knuth’s long-run Gray code (Figure 3d) is the one used for the orchestral version
of the piece gray codes. The canonical transition sequence for Knuth’s code is given
in Figure 4. Each number represents the bit position where the bit flip occurs in each
successive binary word. For the orchestral realization of gray codes, 0, 1,2, 3,4, 5,
6, 7 represent clarinets, strings I, flutes, vibraphones, oboes, strings II, bassoons,
and horns, respectively.

1062351742501635207145263150273514620517325016452371052631542705
1362051742531605237145260153270514623517025316452071352601542735
1062351742501635207145263150273514620517325016452371052631542705
1362051742531605237145260153270514623517025316452071352601542735

Fig. 4: The canonical transition sequence for Knuth’s long-run Gray code.

Another possible Gray code that could be used to generate the piece is called
a Beckett-Gray code (after the playwright Samuel Beckett). Beckett defined this
particular type of Gray code for his work Quad (1981), where he wanted all com-
binations of performers to be on stage at some point throughout the work such that
the one who has been on stage the longest will always be the next to exit. Math-
ematically speaking, the OGMC of a Beckett-Gray code is that the position with
the current longest ‘on’ bit run will always be the next to flip ‘off’. By definition,
a Beckett-Gray code should be quite balanced and have reasonably uniform, long
run-lengths.

It turns out that a 4-bit Beckett-Gray code does not exist, which is why Beckett
was unable to implement his original idea and altered it in order to finish the piece.
Recently, an 8-bit Beckett-Gray code was found by Brett Stevens, et al. [24]. Shortly
after, a fast algorithm to generate Beckett-Gray codes was defined by Joe Sawada,
et al. [22]. The canonical transition sequence for the 8-bit code presented in [24] is
given in Figure 5.

Several open questions arise from the need of a Gray code that is highly balanced
and has uniformly long run-lengths such as how to define and encode the OGMC:s.
It is unclear if the OGMC given in the score of the piece gray codes is adequate as it
relies on the assumptions that balance will result in uniformly long run-lengths and
that minimizing the standard deviation of the number of bit flips across the positions
will balance the code. The difficulty of the optimization problem is compounded by
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0123456070121324356576071021353462670153741236256701731426206570
1342146560573102464537571020435376140736304642737035640271327505
4121027564150240365425013602541615604312576032572043157624321760
4520417516354767035647570625437242132624161523417514367143164314

Fig. 5: The canonical transition sequence for the 8-bit Beckett-Gray code found by Stevens, et al.

the fact that there are three potential optima: maximal uniformity of run-lengths,
maximality of run-lengths, and balance.> How these optima might relate or conflict
both perceptually in the resulting sound and with respect to modelling the problem
warrants further investigation.

2.2 de Bruijn Sequences

Next, we examine de Bruijn sequences (after Nicolaas Govert de Bruijn [4]). For-
mally defined, a de Bruijn sequence B(k,n) is a cyclic sequence of a given alphabet
A of size k in which every word of length n in A appears uninterrupted only once.
Essentially, using a de Bruijn sequence is the fastest way to brute force hack a com-
bination lock® with combination size n because the last n — 1 symbols of a word in
the sequence will always overlap with the first n — 1 symbols of the next word.

The morphological constraints of a de Bruijn sequence are nicely illustrated by
a particular type of directed graph referred to as a de Bruijn graph. In a de Bruijn
graph, the vertices are all words of length n from a given alphabet A of size k (the
CC) and two vertices are connected by a directed edge if the last n — 1 symbols
of the out-vertex overlap with the first n — 1 symbols of the in-vertex (the LMC;
for an example, see Figure 6). The sequence itself can be constructed by finding a
Hamiltonian cycle (the GMC) on such a graph.

There are several known algorithms to generate de Bruijn sequences. Notably,
Harold Fredricksen and James Maiorana have defined an algorithm that generates a
lexicographic least de Bruijn sequence by concatenating the lexicographic sequence
of Lyndon words of length divisible by n [10]. A Lyndon word is a string that is
smaller in lexicographic order than all its rotations. Not only are Lyndon words
useful in efficient generation of de Bruijn Sequences, they are also representatives
of aperiodic necklaces; the topic of Section 2.3.

5 In CP, this is called a multi-objective problem (see [19, 12, 8]). For example, one could weight
and sum the objectives to prioritize conflicting optima.

6 This is assuming that one does not need to reset anything after entering each combination.
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Fig. 6: B(3,2) with Hamiltonian cycle (indicated by dashed lines).

2.2.1 Spatial de Bruijn sequences

In the piece room and seams (2008), 4 groups of performers are located in a room as
far as possible from all other groups. The piece enumerates all spatial sequences of
size 4 in the shortest morphology possible. The representative de Bruijn sequence
has both an alphabet size and word length of 4. Each symbol in the alphabet rep-
resents a location in space articulated by the sounding of a tone from the group at
that location. As no OGMCs were defined, the de Bruijn sequence used to generate
the piece was computed with a program written by Hakan Kjellerstrand that imple-
ments the algorithm by Fredricksen and Maiorana mentioned above.” An excerpt
from the score is provided in Figure 7. Despite lacking an OGMC, this example
still demonstrates one of many ways even a standard de Bruijn sequence can be of
interest musically. Our next example extends the standard de Bruijn sequence with
an OGMC necessitated by a musical practicality.

2.2.2 Space-limited contour de Bruijn sequences

The piece dissection and field (2008) enumerates all melodic contours of size 6
in the shortest morphology possible. The representative de Bruijn sequence has an
alphabet of three numbers {—1,0, 1} that indicate direction in a pitch morphology:
down, same, up, respectively.

7 The program for this de Bruijn sequence generator written in Java is available at ht tp: //www.
hakank.org/comb/deBruijn. java (accessed January, 2015). It is a port of Frank Ruskey’s
C and Pascal versions, which are available upon request from the Combinatorial Object Server
athttp://theory.cs.uvic.ca/inf/neck/NecklaceInfo.html (accessed January,
2015).
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_

Fig. 7: Excerpt from score of room and seams.

In order for pitches not to get extremely high or low, the range of the sequence’s
running sum is constrained. We denote a de Bruijn sequence constructed from an
alphabet of integers that sum to 0 with an OGMC that constrains the range of the
running sum as “space-limited”. Due to this added constraint, the algorithm used
for room and seams was not suitable. The final contour morphology for dissection
and field was found by Kjellerstrand. After unsuccessfully trying to find a solution
by brute-force searches for Hamiltonian cycles in a de Bruijn graph, Kjellerstrand
turned to CP in order to limit the solution space for greater efficiency by defining
an objective that minimized the difference between the extremal values in the run-
ning sum while satisfying the fundamental de Bruijn sequence constraints.® The
final pitch morphologies® for dissection and field were created from several com-
posed melodic fragments such that, when pieced together, ultimately conformed to
the contour sequence as a whole. That is, the contour sequence was reconstructed
from the melodic fragments. Both the sequence and an excerpt from the score are
provided in Figures 8 and 9, respectively.

While Kjellerstrand found a solution satisfactory for the creation of dissection
and field, it remains an open question whether or not it is optimal. That is, whether
it is the de Bruijn sequence B(3,6) with alphabet A = {—1,0,1} where the differ-

8 The program that generated the final solution for dissection and field is available at http:
//www.hakank.org/minizinc/debruijn_space_limited.mzn (accessed January,
2015). It was written in a CP language called MiniZinc available at http://www.minizinc.
org/ (accessed January, 2015). Kjellerstand has several other implementations using various
CP languages to find traditional de Bruijn sequences with the running sum constraint relaxed at
http://hakank.org/common_cp_models/#debrui jn (accessed January, 2015). Also,
while MiniZinc is considered a general high- or medium-level CP language, there is also a
music specific CP language written by Torsten Anders called Strasheela available at http:
//strasheela.sourceforge.net (accessed January, 2015). Anders and others have pro-
duced interesting results modelling music theories using CP (see [2, 3, 27]).

9 The piece integrates the space-limited de Bruijn sequence with other formal concerns. Two mor-
phologies were constructed from the contour sequence; one for each of two groups. That is, the
groups play the same contour but on different notes (with one group always higher than the other).
In the score (see Figure 9), the notes and rests (the latter of which were arbitrarily inserted using
the caret symbol) have numbers and tick marks that indicate general durations (which were also
arbitrarily/intuitively assigned). Each performer plays independently of the others, which blurs the
sequence to some extent. Also, one of the performers from the first group departs from the sequence
for a significant portion of the piece to sustain a high-pitched tone.
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Fig. 8: de Bruijn sequence used for dissection and field where —1, 0, and 1 map to —, x, and +,
respectively.
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Fig. 9: Excerpt from score of dissection and field.
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ence of the extremal values of the running sum (which is 8 for the sequence used in
dissection and field) is smaller than all other such de Bruijn sequences. As an exten-
sion, the general case of lower bounds on the range of extremal values in the running
sum of optimal solutions for space-limited de Bruijn sequences also remains open.

2.3 Aperiodic necklaces

The piece necklaces (2014) is a minimal change ordering of unique picking pat-
terns using a set of plucked strings where the resultant pitch of each string is the
same as all others. Each pattern in the piece is analogous to a representative of an
aperiodic necklace, which is an equivalency class on aperiodic strings under rota-
tion and permutation of the symbols. For example, (0,1,0,2,3,3) is equivalent to
(1,0,2,3,3,0) under rotation and (2,3,2,1,0,0) under symbol permutation. There-
fore, they are all representatives of the same aperiodic necklace. In the last section,
we discussed how de Bruijn Sequences can be generated efficiently by concate-
nating Lyndon words ordered lexicographically. The morphology for necklaces is
related because each aperiodic necklace contains one Lyndon word which means
Lyndon words form representatives of aperiodic necklaces.

To demonstrate how equivalencies of aperiodic necklaces relate to the unique-
ness of picking patterns, lets map the example above to a traditionally tuned so-
prano ukulele: IV — G4, III — C4,IT — E4,1 — Ay4. (0,1,0,2,3,3) could represent
(Ip, 115,19, 19, IV,, IV, ) which all sound A4.!9 Under permutation of symbols (the
strings of the ukulele in this case), (IIly,IV;, Iy, 1I5,1y,Ip) results in the same pat-
tern because all the strings still sound A4 and the rhythm remains unchanged. In the
piece, each pattern may be repeated several times successively. This is why equiv-
alency under rotation is also necessary. When repeated successively, the rhythmic
character of the repeated pattern remains the same regardless of which rotational
representative is used.

necklaces enumerates through all unique picking patterns of length 6 or less using
4 strings (the CC) such that from pattern to pattern one element is added, removed,
or changed (the LMC). Not considering the immediate repetitions, each pattern oc-
curs only once (the GMC) except for the patterns of length 1 and 2 (explained be-
low). The OGMC is that the morphology submit to an “arc” form where the lengths
of the patterns generally increase then decrease. An excerpt of the score is provided
in Figure 10.

101 this example, the letters indicate note names with subscripts that indicate octaves whereas the
Roman numerals indicate string numbers of the ukulele with subscripts that indicate frets; 0 being
the open string. It is also understood that this fingering, even on the ukulele, is very difficult. We
use it just for demonstrative purposes. All the performances to date (as of January 2015), have been
with a ukulele where the open strings are tuned to the same pitch. Minor variations in tuning, string
tension, and string gauge contribute to the overall sound of the piece even though conceptually, the
strings are assumed to be equivalent.
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e

Fig. 10: Excerpt from score of necklaces. Each cell indicates a picking pattern given by a tablature
where each line represents one of 4 plucked strings and the horizontal axis shows order. The ring
around a cell is the necklace representation where the numbers, starting from the number centered
above the tablature and moving clockwise, correspond to the strings of the picking pattern.

A solution that satisfies the morphological constraints outlined above can be gen-
erated by finding a Hamiltonian path on a graph where the vertices are representa-
tives of the aperiodic necklaces and edges are induced by the LMC. Note that the
graph can change substantially based on which representatives are chosen. By def-
inition, adjacent necklaces cannot differ in length by more than one because of the
LMC. Clearly the graph cannot submit a Hamiltonian cycle since the trivial neck-
lace, (0) and its equivalencies, can only connect to one other necklace: that of length
2, (0, 1) and its equivalencies. However, the graph does submit a Hamiltonian cycle
if the trivial case is excluded. Intuitively, it can be seen that a Hamiltonian cycle
instead of just a path is more likely to satisfy the OGMC because the only way to
return to the start vertex would mean that you would have to generally increase then
decrease the length of the necklaces. Otherwise, all vertices adjacent to the start
vertex would already be traversed.

The final morphology of the piece was found by brute force (implemented in the
programming language Mathematica) as follows. Generate a graph where a vertex
represents all representatives of a given aperiodic necklace (excluding the trivial
case) and two vertices are connected if any of their representatives satisfies the LMC
(note that this graph is highly connected). Starting at the vertex representing the
necklace of length 2, randomly choose one of its representatives. Then from all
adjacent vertices remove any representatives that no longer satisfy the LMC (which
might eliminate some of the edges altogether). Then randomly choose one of the
remaining adjacent representatives. Repeat this process until either a Hamiltonian
cycle is found or until the path cannot extend any further, in which case, start over.

As a Hamiltonian cycle was found, the necklace of length 2 is repeated since it
was the start and end vertex. Then, the trivial case was added at the beginning and
end.

It is unknown to the author whether or not enumerations through aperiodic neck-
laces similar to the one above can be generated more efficiently. Also, it is unknown
under what conditions there exists a graph that submits a Hamiltonian cycle when
the minimum and maximum lengths of the necklaces are changed.
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2.4 Disjoint subset pairs

Our final example is the piece partition and gate (2014) for sustaining instruments
and computer. While the morphology is not constrained by an OGMC, it has a LMC
of minimal change and uses an algorithm to iterate through the elements defined by
the CC that suggests an interesting non-deterministic method to search for Hamil-
tonian paths in a graph.

The piece works as follows. Two microphones are placed equidistant from a sin-
gle speaker such that performers, who repeatedly play long sustained tones, can
move freely in the space among the microphones and the speaker. At any given
time, the microphones map to disjoint subsets (including the empty set) of four
sources: a high frequency sine tone, a low frequency sine tone, and two record-
ings. The subset of sources mapped from the microphone with the louder signal (as
tracked by an amplitude follower) is output to the speaker while the other subset is
muted. Every 15 to 30 seconds, the mapping from one of the microphone changes
such that a source is added or removed (minimal change) while the other micro-
phone maps to the same subset of sources (no change); always favoring mappings
that have occurred less. In this case, the musical motivations are both situational and
perceptual. By changing the mappings over time, the players’ expectations of how
they are effecting the system are continually shifting while different combinations
of the sources are promoted.

Mathematically, the CC defines all disjoint pairs of subsets of the superset
{1,2,3,4} (where the numbers indicate the sources). The LMC is that between any
two pairs, one subset must either add or remove a number while the other stays the
same. The GMC is that pairs that have occurred less are favored.

In a realization of the piece, a computer generates the morphology in real-time
by a quasi-random walk with statistical feedback on a graph where the vertices are
the subset pairs and edges are induced by the LMC (see Figure 11). The algorithm
is derived from James Tenney’s dissonant counterpoint algorithm (see [18]), which
he used as a defacto quasi-random element chooser for many of his computer gen-
erated pieces after 1985. Tenney’s algorithm works as follows. A set of elements are
initialized to some arbitrary set of probabilities. After each trial, the probability of
the chosen element is set very low or to 0 and the probabilities of all other elements
are incremented. Simply put, the longer an element has not been chosen, the more
likely it will be chosen. Based on the increment function, the algorithm can generate
evenly distributed quasi-random choices over a limited number of trials.

Similarly in partition and gate, when a vertex in the graph is chosen, its probabil-
ity is set to 0 and the probabilities of all other vertices in the graph are incremented.
Therefore, the walk is generally directed towards vertices depauperate in the mor-
phology up to that point. An example sequence of choices is given in Table 2.!!

' The vertices of the graph (shown in Figure 11) represent the subset pairs such that order of
subsets within the pair does not matter. However, the computer program that generates the random
walk tracks which microphone is mapped to which subset. This does not prohibit any particular
subset being mapped from either of the microphones. For example, the first and last mapping in
Table 2 are represented by the same vertex in the graph.
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Note that the partition and gate algorithm would be exactly the same as Tenney’s if
the graph were completely connected.

Table 2: Example walk of partition and gate.

mic 1 mic 2
{1.2} | {3.4}
{1y | {3,4}
{1} {2,3,4}
{1 | {23}
{14 | {23}
{14t | {3}
{1,2,4} | {3}
{1,2,4} | {}
{1.2,3,4} {}
{1,343 | {}
{1,3,4} | {2}
{3.4r | {2}
{3.4r | {1,2}

Fig. 11: Graph of partition and gate.

We leave as an open question whether or not this algorithm (or something similar)

might be of use in trying to find Hamiltonian paths in arbitrary graphs.

3 Conclusion

We have examined several types of minimal change musical morphologies. These
investigations, particularly with respect to the additional, musically motivated con-
straints on the analogous mathematical representations, have provided several open
questions.

1.

How exactly would OGMCs be defined mathematically and encoded compu-
tationally for a maximally balanced, maximally uniform long-run Gray Code?
How do the three optima of maximal run-length uniformity, run-length maximal-
ity, and balance relate to or conflict with each other?

. What are the lower bounds on the range of extremal values in the running sum of

optimal solutions for space-limited de Bruijn sequences?

. Given a graph with vertices that are representatives of aperiodic necklaces of

length n to m (one representative per necklaces) with edges induced between two
representatives if one element is added, removed, or changed, under what condi-
tions is the graph Hamiltonian? Further, if the graph does submit a Hamiltonian
cycle, does there exist an efficient algorithm to generate the enumeration?

. Can Tenney’s dissonant counterpoint algorithm be used and/or altered to non-

deterministically find Hamiltonian paths in arbitrary graphs?
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To add, the author is currently working on a piece derived from multiset permu-
tations where only one transposition/swap occurs between adjacent permutations in
the morphology (the LMC) and specifically where only one element in the mul-
tiset repeats (the CC). As with most of the morphologies we have discussed, the
GMC is that each element occurs only once. Similarly to the piece gray codes, a
highly balanced morphology with maximally uniform, long run-lengths is desired
(the OGMC). And like standard Gray codes, there exists several algorithms for gen-
erating minimal change mulitset permutations (e.g., see [14, 16, 28, 25, 23]), but the
resulting morphologies have highly varying run-lengths and are unbalanced. While
the example was not included in detail because the composition is yet unfinished,
the idea has already led to an interesting discussion about the character of multiset
permutations and all the questions posed for Gray codes apply.

Finally, it might be of interest to investigate these ideas and objects more deeply
with respect to algorithmic complexity [15, 5, 6], graph metrics [9, 30], Polansky’s
morphological metrics [17], other structural metrics [29], and music perceptual mea-
sures (such as perceived rate of change as discussed by Tenney in [26]). Does the
number of morphologies that satisfy a given set of morphological constraints relate
to complexity? How do morphologies that satisfy the same set of morphological
constraints compare under various metrics? Can the taxonomy of morphological
constraints presented in this paper as a generative tool also prove useful as an ana-
lytical tool? Addressing such questions might give us a better understanding of these
types of morphologies and suggest further research.
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