
generator, hierarchical dust, and necklaces

michael winter (los angeles, ca; 2016)
for cristian alvear

general remarks (which can be used / excerpted for progam notes)

In March of 2016, the power went out in the industrial part of Downtown Los Angeles where I was living. One of
the neighboring buildings, a fish distribution company, used an incredibly loud generator as backup. In an effort to
capture the moment, I recorded the sound with a handheld video camera including the view of a Los Angeles sunset
over the warehouse.

generator, hierarchical dust, and necklaces is an installation-performance piece consisting of several elements: the
video and audio field recordings mentioned above (the ‘generator’), an electronic manipulation that filters the sound
of the generator (using a technique I call ‘hierarchical dust’), a synthesized visualization of the hierarchical dust
algorithm (juxtaposed with the video field recordings), and a set of patterns played on the guitar (which are analogous
to mathematical objects called ‘necklaces’).

The form of the piece consists of one or more cycles / swells. Throughout each cycle, the digital filter oscillates
between unstable and stable states. During an unstable state, the filter is triggered rapidly to change configurations
(that is, which bands of the frequency spectrum it is filtering). In a stable state, a given filter configuration is held,
and then faded out and back in as the guitar, which is tuned based on the 60 cycle hum of the generator, plays a
specified repeated pattern.

The trajectory of the cycle is a swell articulated by loudness and the amount the filter can change every time it is
triggered: at first, the bands of the filter have a high probably of being allowed to pass, but over time, each band
has a higher and higher probability of being stopped.

Th guitar part was designed specifically to accompany / augment the installation intermittently which allows the
piece to be played in concert or in an installation / exhibition setting with longer durations where the performer
can enter and exit freely between cycles.

instructions for the guitarist

The lowest string, VI, of the guitar is tuned to the fundamental of the generator (which is a 60 cycle hum). The
V string is tuned a perfect fifth above and the IV string is tuned a just minor 7th above the V string (this can be
tuned from the 7th harmonic of the V string. The two highest strings, II and I, should be tuned approximately one
octave higher than the IV string. This will allow all of these strings to be played open. The III string will have
be stopped such that it is near the I and II string. Thus, the resulting notes of the highest three strings will all
be slightly detuned from each other at approximately one octave higher than the IV string. This tuning brings the
guitar substantially lower than usual, which contributes to the desired effect.

During the unstable states, the guitarist is free to improvise freely on all 6 notes but should do so in an extremely
sparse manner (averaging a tone every few seconds).

During the stable states. The SuperCollider program (with user-controlled variables that are explained in more detail
below) will display a plucking pattern (a necklace) in tablature-form to be realized on the highest three strings.

As illustrated below, the unstable and stable states are distinguished visually by the program in a window titled
‘necklaces window’. During the unstable states, the upcoming necklace will be given in gray. Once a switch to a
stable state occurs the necklaces turns black and the performer should play the pattern until it fades out (marking
the return to an unstable state).

The peak volume of the generator should be quite loud. While the generator fades in and out in order to bring the
guitar to the foreground during the stable states, it will likely be necessary to amplify the guitar.

1

SuperCollider program structure

The structure of the application is hopefully straightforward and does not warrant much explanation. The application
launches three windows: 1) the ‘hierarchical dust window’ which, as explained in the following section, should be
projected next to the video field recordings; 2) the ‘necklaces window’ which, as explained in the previous section,
displays the plucking pattern that the guitarists plays during stable states; and 3) a graphical user interface (gui)
that controls variables that the a user can manipulate. The gui is shown below along with an explanation of each
function.

To launch the application, execute generator_hierarchical_dust_and_necklaces_main.scd in SuperCollider
after booting the server (on linux, this is achieved by pressing cmd+enter with the cursor anywhere within the
code block).

unstable → stable slider: This is the probability that after 15 seconds within an unstable state that a transition
back to a stable state will occur. That is, every second after 15 seconds, there is a 1 in x chance that a transition
will occur. The higher the number, in general, the longer the unstable states will persist. This variable goes into
effect in realtime.

stable → unstable slider: This is the probability that after 15 seconds within a stable state that a transition back
to an unstable state will occur. That is, every second after 15 seconds, there is a 1 in x chance that a transition will
occur. Note that the transition back will take an additional 15 seconds such that the shortest possible duration of a
stable state is 30 seconds. The higher the number, in general, the longer the stable states will persist. This variable
goes into effect in realtime.

cycle length slider: This is the length in minutes that a cycle will last. This variable goes into effect at the end
of each cycle.

border button: This button adds / removes the window decorations from the ‘hierarchical dust window’ (explained
in more detail below).

loop button: This button allows the cycles to continue looping for performances with more than one cycle such as
if the piece is installed for longer periods of time.

start button: This button (re)starts all processes after a 4 second delay.

The primary source code for the application is appended at the end of this score and can be downloaded from a git
repository at https://gitea.unboundedpress.org/mwinter/generator_hierarchical_dust_and_necklaces. The
whole package with the video and audio files is available upon request or can be downloaded at https://gitea.

unboundedpress.org/mwinter/generator_hierarchical_dust_and_necklaces/releases. Note that moving the
files or changing the filenames will break the application. The generation of this document (using LaTex) contains
a version date in order to help track changes and the git repository will also detail commit changes. The piece was
last tested on SuperCollider version 3.8.0.

video playback

The video field recordings should be played in random order and projected for the audience next to the output of the
‘hierachical dust window’. Examples of 3 frames are provided on the following page. Note that this may need to be
done using two computers / projectors: one that outputs the SuperCollider generated video from the ‘hierarchical
dust window’ and one that plays back the video field recordings.

Another options is to run them from the same computer placing the ‘hierarchical dust window’ next to the program
that is used to playback the video field recordings. Note that to do this, the window decorations of the desktop
window manager need to be removed (which is not always possible with some operating systems and window
managers). The SuperCollider program has a button to remove the window decorations from the ‘hierarchical dust
window’ and some video playback program such as VLC have a similar option. There are also window managers
such as OpenBox which allow users to toggle on and off window decorations. The example frames on the following
page were made using the aforementioned technique with one computer.

Accompanying the sonic with the visual elements of the piece, while optional, is highly preferred.

2

document generated: 2019.11.21

3

generator hierarchical dust and necklaces main.scd

1 (
2 // MAIN LAUNCH
3 ˜dir = thisProcess.nowExecutingPath.dirname;
4 "generator hierarchical dust and necklaces synthdef.scd".loadRelative(true, {
5 "generator hierarchical dust and necklaces visuals.scd".loadRelative(true, {
6 Buffer.read(s, thisProcess.nowExecutingPath.dirname +/+ "../audio/generator.wav", action: {
7 |buf |
8 ˜buf = buf;
9 {˜generateVisuals.value(buf)}.defer;

10 });
11 })});
12)

generator hierarchical dust and necklaces synthdef.scd

1 (
2 SynthDef(\hierarchical dust, {
3 arg stable = 10, unstable = 10, buf = 0, loop = 0, cycle len = 10;
4 var local in, hold, change, state, latch, hierarchical dust, generator, env master, env spectrum, env vol,

chain, spectrum mult;
5
6 // Feedback in state
7 local in = LocalIn.kr(2, 0);
8 // Make each state last at least 15 seconds, however these variables could be different / manipulated in the

array [15, 15, 15]
9 // That is, they could be turned into user variables

10 // Note the second two account for the fade in and fade out of the necklace, so it will be at least 30 seconds
long

11 hold = PulseCount.kr(Impulse.kr(1), Changed.kr(local in[0])) > Select.kr(local in[0], [15, 15, 15]);
12 // Change state trigger
13 change = TWChoose.kr(Impulse.kr(1), [0, 1], [Select.kr(local in[0] > 0, [unstable, stable]), 1].normalizeSum) *

hold;
14 // Change state
15 state = Stepper.kr(change + TDelay.kr(local in[0] > 1, 15), 0, 0, 2);
16
17 // Monitor
18 Poll.kr(Impulse.kr(1), hold, \hold);
19 Poll.kr(Impulse.kr(1), change, \change);
20 Poll.kr(Impulse.kr(1), state, \state);
21
22 // Trigger for filter changes
23 hierarchical dust = (
24 Impulse.kr(8) *
25 (TRand.kr(0, 1, Impulse.kr(8)) <= 0.5) *
26 (TRand.kr(0, 1, Impulse.kr(1)) <= 0.75) *
27 (state <= 0)
28);
29
30 // Playback the soundfile
31 generator = PlayBuf.ar(1, buf, BufRateScale.kr(buf), 1, 0, 1);
32 latch = Impulse.kr(Latch.kr((60 * cycle len).reciprocal, local in[1]));
33 env master = EnvGen.kr(Env.sine(Latch.kr(60 * cycle len, latch)), latch * (loop + Impulse.kr(0)));
34 Poll.kr(Impulse.kr(1), env master, \env);
35
36 // Feedback out state
37 LocalOut.kr([state, latch]);
38
39 // Gate bins of the FFT
40 env spectrum = pow(env master, 3) * 0.75;
41 chain= FFT(LocalBuf(128).clear, generator);
42 spectrum mult = { |i | TRand.kr(0, 1, hierarchical dust) > Latch.kr(env spectrum, hierarchical dust)} ! 64;
43 chain = chain.pvcalc(64, {|mags, phases | [mags * spectrum mult, phases] });
44
45 // Output
46 env vol = pow(env master, 2);
47 Out.ar([0,1], IFFT(chain).dup * env vol * (1 − EnvGen.kr(Env.asr(15, 0.9, 15, \sine), state % 2)));
48
49 // Send info to Visuals
50 SendTrig.kr(Impulse.kr(24), 0,
51 1 − EnvGen.kr(Env.sine(1/6.0, env vol), Select.kr(state > 0, [hierarchical dust, state − Delay1.kr(

state) < 0])));
52 SendTrig.kr((state − Delay1.kr(state) < 0) * PulseCount.kr(Changed.kr(local in[0])) >= 1, 1);
53 SendTrig.kr(Changed.kr(state), 2, state > 0);
54 SendReply.kr(Impulse.kr(24), '/tr', spectrum mult, 3);
55 }).send(s);
56)

generator hierarchical dust and necklaces visuals.scd

1 (
2 ˜generateVisuals = {
3 arg buf;
4 var control window, width cw = 600, height cw = 100,
5 stable slider, unstable slider, cycle slider, stable val, unstable val, cycle val,
6 border = true, border button, loop button,start button,
7 hierarchical dust window, width hdw = 600, height hdw = 600, shade hd = 1, spectrum mult hd = Array.fill(128,

{1}), state hd = 0,
8 necklaces window, width nw = 400, height nw = 600, shade n = 0, reset hd window,
9

10

1

11 // All the possible necklaces
12 necklaces = [[[2,0,1],[2,1,0]],
13 [[2,0,1,0],[2,1,0,1],[2,2,0,1],[2,1,2,0],[2,2,1,0]],
14 [[2,0,1,0,1],[2,1,0,1,0],[2,2,0,1,0],[2,0,2,0,1],[2,1,2,0,1],[2,2,1,0,1],
15 [2,2,2,0,1],[2,0,2,1,0],[2,1,2,1,0],[2,1,2,2,0],[2,2,1,2,0],[2,2,2,1,0]],
16 [[2,0,1,0,1,0],[2,1,0,1,0,1],[2,2,0,1,0,1],[2,0,2,0,1,0],[2,1,2,0,1,0],[2,2,1,0,1,0],
17 [2,2,2,0,1,0],[2,0,2,1,0,1],[2,0,2,2,0,1],[2,1,0,2,0,1],[2,1,2,1,0,1],[2,1,2,2,0,1],
18 [2,2,0,2,0,1],[2,2,1,2,0,1],[2,2,2,1,0,1],[2,2,2,2,0,1],[2,0,2,1,2,0],[2,0,2,2,1,0],
19 [2,1,0,2,2,0],[2,1,2,1,2,0],[2,1,2,2,1,0],[2,1,2,2,2,0],[2,2,1,2,1,0],[2,2,1,2,2,0],
20 [2,2,2,1,2,0],[2,2,2,2,1,0]],
21 [[2,0,1,0,1,0,1],[2,1,0,1,0,1,0],[2,2,0,1,0,1,0],[2,0,2,0,1,0,1],[2,1,2,0,1,0,1],
22 [2,2,1,0,1,0,1],[2,2,2,0,1,0,1],[2,0,1,2,0,1,0],[2,0,2,1,0,1,0],[2,0,2,2,0,1,0],
23 [2,1,0,2,0,1,0],[2,1,2,1,0,1,0],[2,1,2,2,0,1,0],[2,2,0,2,0,1,0],[2,2,1,2,0,1,0],
24 [2,2,2,1,0,1,0],[2,2,2,2,0,1,0],[2,0,1,2,1,0,1],[2,0,1,2,2,0,1],[2,0,2,0,2,0,1],
25 [2,0,2,1,2,0,1],[2,0,2,2,1,0,1],[2,0,2,2,2,0,1],[2,1,0,2,1,0,1],[2,1,0,2,2,0,1],
26 [2,1,2,0,2,0,1],[2,1,2,1,2,0,1],[2,1,2,2,1,0,1],[2,1,2,2,2,0,1],[2,2,0,2,1,0,1],
27 [2,2,0,2,2,0,1],[2,2,1,0,2,0,1],[2,2,1,2,1,0,1],[2,2,1,2,2,0,1],[2,2,2,0,2,0,1],
28 [2,2,2,1,2,0,1],[2,2,2,2,1,0,1],[2,2,2,2,2,0,1],[2,0,2,0,2,1,0],[2,0,2,1,2,1,0],
29 [2,0,2,1,2,2,0],[2,0,2,2,1,2,0],[2,0,2,2,2,1,0],[2,1,0,2,1,2,0],[2,1,0,2,2,1,0],
30 [2,1,0,2,2,2,0],[2,1,2,0,2,2,0],[2,1,2,1,2,1,0],[2,1,2,1,2,2,0],[2,1,2,2,1,2,0],
31 [2,1,2,2,2,1,0],[2,1,2,2,2,2,0],[2,2,0,2,2,1,0],[2,2,1,2,1,2,0],[2,2,1,2,2,1,0],
32 [2,2,1,2,2,2,0],[2,2,2,1,2,1,0],[2,2,2,1,2,2,0],[2,2,2,2,1,2,0],[2,2,2,2,2,1,0]]],
33
34 binary map = [[0, 0], [0, 1], [1, 0]], binary rep,
35 necklace len count = Array.fill(necklaces.size, {1}),
36 necklace count = all {: Array.fill(n.size, {1}), n <− necklaces },
37 synth, osc func, necklace func, necklace, necklace transition, necklace fade in, necklace fade out, run = true;
38
39 // Generate the necklaces
40 necklace func = {var necklace len index, necklace index;
41 necklace len index = ({|i | i} ! necklaces.size).wchoose(necklace len count.normalizeSum);
42 necklace len count = necklace len count + 1;
43 necklace len count[necklace len index] = 0;
44
45 necklace index = ({|i | i} ! necklace count[necklace len index].size).wchoose(necklace count[

necklace len index].normalizeSum);
46 necklace count[necklace len index] = necklace count[necklace len index] + 1;
47 necklace count[necklace len index][necklace index] = 0;
48 necklace = necklaces[necklace len index][necklace index];
49 };
50
51 // Fade necklaces in and out
52 necklace fade out = Routine {
53 26.do({ arg i; shade n = (25−i).abs/25.0; (1.0/25).wait;});
54 necklace fade out.yieldAndReset;
55 };
56 necklace fade in = Routine {
57 2.wait; necklace func.value; 26.do({ arg i; shade n = i/25.0; (1.0/25).wait;});
58 necklace fade in.yieldAndReset;
59 }.play;
60 necklace transition = Routine {
61 necklace fade out.play; 1.wait; necklace fade in.play;
62 necklace transition.yieldAndReset;
63 };
64
65 // Get messages from SynthDef
66 osc func = OSCFunc({ arg msg, time;
67 switch(msg[2],
68 0, {shade hd = msg[3]},
69 1, {necklace transition.play},
70 2, {state hd = msg[3]},
71 3, {spectrum mult hd = msg[3..]}
72)},'/tr', s.addr);
73
74 reset hd window = {
75 arg border = true, isLaunch = true;
76 // Create window for projection
77 hierarchical dust window = Window("hierarchical dust window",
78 if(isLaunch,
79 {Rect(100, Window.availableBounds.height − height hdw, width hdw, height hdw)},
80 {hierarchical dust window.bounds}), true, border);
81 hierarchical dust window.background = Color.white;
82 hierarchical dust window.front;
83
84 // Animate
85 hierarchical dust window.drawFunc = {
86 Pen.use {
87 Pen.color = Color.gray(1−shade hd);
88 Pen.addRect(Rect(0, 0, hierarchical dust window.bounds.width, hierarchical dust window.

bounds.height));
89 Pen.perform(\fill);
90
91 Pen.color = Color.gray(shade hd);
92 if(state hd == 1, {
93 binary rep = (all {: binary map[x], x <− necklace }).flatten;
94
95 { |i |
96 Pen.line(
97 hierarchical dust window.bounds.width−if(binary rep[i] ==

1,{40},{30})@(((hierarchical dust window.bounds.height−40)
98 / 128) * i + 150),
99 hierarchical dust window.bounds.width−20@(((

hierarchical dust window.bounds.height−40) / 128) * i +
150))

2

100 } ! binary rep.size;});
101
102 { |i | if(spectrum mult hd[i] == 1,
103 {Pen.line(
104 20@(((hierarchical dust window.bounds.height−40) / 128) * i + 150),
105 40@(((hierarchical dust window.bounds.height−40) / 128) * i + 150))})}

! 64;
106 Pen.stroke;
107 };
108 };
109 };
110 reset hd window.value;
111
112 // Create window for score
113 necklaces window = Window("necklaces window",
114 Rect(width hdw + 100, Window.availableBounds.height − height nw, width nw, height nw));
115 necklaces window.background = Color.white;
116 necklaces window.onClose = { run = false; hierarchical dust window.close; control window.close; ˜synth.free };
117 necklaces window.front;
118
119 // Animate
120 necklaces window.drawFunc = {
121 Pen.use {
122 Pen.color = Color.gray(if(state hd == 1,{0}, {0.5}), shade n);
123 { |i | Pen.line((200−75)@((i−1)*15 + 300), (200+75)@((i−1)*15 + 300)) } ! 3;
124 Pen.stroke;
125
126 { |i | Pen.addOval(
127 Rect(200 − 75 + ((i+1) * (150.0 / (necklace.size + 2)) + 4),
128 (2−necklace[i]−1) * 15 + 300 − 7, 14, 14)) } ! necklace.size;
129 Pen.perform(\fill);
130 Pen.stroke;
131 };
132 };
133
134 // Refresh
135 { while { run } { hierarchical dust window.refresh; necklaces window.refresh; 24.reciprocal.wait; } }.fork(

AppClock);
136
137 // Create window for user controls
138 control window = Window.new("control window",
139 Rect(100, Window.availableBounds.height − height hdw − height cw − 30, width cw, height cw));
140 control window.onClose = { run = false; hierarchical dust window.close; necklaces window.close; ˜synth.free };
141 control window.front;
142 unstable val = TextField().fixedWidth (50).string ("15");
143 stable val = TextField().fixedWidth (50).string ("10");
144 cycle val = TextField().fixedWidth (50).string ("10");
145 unstable slider = Slider(control window).orientation (\horizontal).action ({
146 var scaled val = (unstable slider.value * 25 + 5).trunc;
147 ˜synth.set(\unstable, scaled val);
148 unstable val.string = scaled val;});
149 unstable slider.value = 0.4;
150 stable slider = Slider(control window).orientation (\horizontal).action ({
151 var scaled val = (stable slider.value * 25 + 5).trunc;
152 ˜synth.set(\stable, scaled val);
153 stable val.string = scaled val;});
154 stable slider.value = 0.2;
155 cycle slider = Slider(control window).orientation (\horizontal).action ({
156 var scaled val = (cycle slider.value * 25 + 5).trunc;
157 ˜synth.set(\cycle len, scaled val);
158 cycle val.string = scaled val;});
159 cycle slider.value = 0.2;
160 border button = Button(control window).states ([["border", Color.black], ["border", Color.black, Color.grey]]).

value (1).action (
161 {|v | hierarchical dust window.close; reset hd window.value(if(v.value == 1,{true},{false}), false)});
162 loop button = Button(control window).states ([["loop", Color.black], ["loop", Color.black, Color.grey]]).

action (
163 {|v | ˜synth.set(\loop, v.value)});
164 start button = Button(control window).states ([["start", Color.black]]).action (
165 {|v | Routine{
166 state hd = 0;
167 necklace fade in.play;
168 ˜synth.free;
169 (1).wait;
170 ˜synth = Synth.newPaused(\hierarchical dust, [\buf, buf]);
171 (1).wait;
172 {stable slider.valueAction = stable slider.value;
173 unstable slider.valueAction = unstable slider.value;
174 cycle slider.valueAction = cycle slider.value;
175 loop button.valueAction = loop button.value;}.defer;
176 (2).wait;
177 ˜synth.run;
178 }.play;});
179 control window.layout = VLayout(
180 HLayout([StaticText().string="unstable −> stable", stretch: 1], [HLayout(unstable slider, unstable val)

, stretch: 4]),
181 HLayout([StaticText().string="stable −> unstable", stretch: 1], [HLayout(stable slider, stable val),

stretch: 4]),
182 HLayout([StaticText().string="cycle length", stretch: 1], [HLayout(cycle slider, cycle val), stretch:

4]),
183 HLayout(nil, nil, nil, border button, loop button, start button)
184);
185 };
186)

3

