Lamentations I: Remembering Clive Wearing
an opera

michael winter (mexico city, mx; 2017)

Acclaimed musician and musicologist Clive Wearing suffers from one of the worst known cases of amnesia after con-
tracting herpes encephalitis. Wearing’s caretakers encouraged him to keep a journals” Lamentations I: Remembering
Clive Wearing is an opera that sets entries from Clive Wearing’s journal. At intervals prescribed by the journal
itself, entries are read and accompanied by a sonic and visual flickering / flourish of\activity using recordings of
Orlando de Lassus’ nine Lamentationes Hieremiae Prophetae (as Wearing was\an expert in the music of Lassus),
sustained noises and tones, as well as lights. The piece intends to reverently reflect the importance of memory on
our lives and personal identity.

Setting

The piece should be presented in a very dark, preferably pitch black space. Perhaps as an installation.

Selecting journal entries and timings of the waking states / flourishes

The central metaphor of the piece is the act of occasionally waking up into brief states of consciousness from long
periods of unconsciousness. The timings of thesezwaking states are derived by the times in Wearing’s journal.

In a given performance, at least five entries.should be selected. It is preferred to select sets of successive entries
with timings that occur within a range suitable for the length of the performance, which should last at least thirty
minutes but could go on for much longer (oryindefinitely in the case of an installation). There are often long stints
between entries. Therefore, multiple seriesof entries (even from different days / pages) can be selected. As explained
in more detail below, any suceessive groupings of entries will be accompanied by a continuous drone. In the case
that an interval between entries is toe-long to be faithfully observed or a switch is made to another series of entries,
the drone fades to silenceland'then fades back in to indicate the start of the next entry or series of entries. Provided
below is an example sequence of times and entries.

0:00 (fade in drone)

0:03 (wake), 10:08 am Now I am superlatively awake. First time awake for years. Patience Begins.
0:08 (wake) "10:13 am Now I am overwhelmingly awake. First time for years.

0:16 (wake) 10:21 am A gente liedown.

0:23 (wake) 10:28 am Actually I am now first time awake for years. Patience observedly needed.
0:33 (wake) 10:38 am Actually I am now awake for the first time for years. Patience begins so I may

see everything. First thought: I adore Deborah forever.

0:43 (wake) 10:48 am I am now totally, perfectly awake. First time for years. Patience begins fully
observed.

0:46 (fade out drone)

0:49 (fade in drone)
0:52 (wake) T:47 am This illness has been like death. Till now. All senses work. First thought:
I love darling Deborah forever. Our father.

0:56 (wake) 7:51 am First conscious stroll

1:12 (wake) 8:07 am I am totally, perfectly awake. First time. Breakfast

1:36 (wake) 8:31 am Now I am really completely awake. First time. Patience.
1:40 (wake) 8:35 am Time to see relaxing TV.

1:45 (fade out drone)

Rich-get-richer algorithm

All parameters of the piece are controlled by an algorithm that models the sociological effect of the rich-get-richer.
In short: the more an element is chosen, the more likely it is to be chosen. The exception is that immediately after an
element is chosen, the probability that it is chosen over the next few trials is diminished. This allows, metaphorically
speaking, multiple elements to accumulate wealth as opposed to only one garnering all the wealth. This algorithm
works by making selections thirty times a second and keeping track of the number of times a given element (of nine
in this particular case) is selected over a window of time. The count is then normalized and smoothed to control
volume of the sonic elements and intensity of the visual elements. The algorithm was originally programmed in
SuperCollider. The computer program, particularly the few lines of code that run the rich-get-richer algorithm, is
thoroughly commented throughout with the intention that the code, in and of itself, documents and expresses the
algorithm in complete detail.

Visual elements

The visual elements of the piece consist of eighteen lights that are controlled programatically by the rich-get-richer
algorithm. There aredwo sets of nine lights. In each set, each light corresponds to one of the nine Lamentations.
One set is governed by impulses (smoothed over time) with frequencies based on the counts of the rich-get-richer
algorithm. This.creates a stochastic flickering effect. The other set is governed more directly by the counts themselves
creating longer fades. While the SuperCollider application generates live video that can be projected onto a wall,
it is possible, or rather preferred, to use the signals to control real lights (e.g. with an Arduino) instead of, or in
addition to, the projection. In the generated video (a screenshot of which is shown above), each set of nine lights is
presented in a square matrix, the first set described above is on the left while the second is on the right. For real
lights, incandescent bulbs with tungsten filaments should be used (or covers that produce a similar color). Further,
with real lights, the setting can be designed to utilize the entire space by spreading the lights apart.

Sonic elements

Prelude: The piece may be preceded by a brief statement about memory that relates to Wearing’s condition. This
could also be in the form of an accompanying program note. For example, the statement / program note could
include quotations by people who have written about memory or Wearing himself (such as Colin Blakemore, Oliver
Sacks, or Wearing’s wife at the time of the incident Deborah Wearing). A text may also be written especially for a
given performance.

Drone: For a majority of the performance there is a drown which is only attenuated during the waking states
and silences between sets of journal entries. The drone consists of nine sine tones corresponding to each of the
nine Lamentations. The Lamentations are actually grouped in three sets of three: prima, segunda, and tertia.
The three sine tones corresponding to the prima Lamentations are centered around 60 hertz, the three sine tones
corresponding to the segunda Lamentations are centered around 240 hertz (two octaves above), and the three sine
tones corresponding to the tertia Lamentations are centered around 960 hertz. During the non-waking states,
impulses occasionally trigger a change in frequency (plus / minus 3 hertz from the center frequency) of one of the
sine tones thus changing the overall beating pattern.

Readings of the journal entries: The entries should be read in a rather undramatic (almost solemnly) and
clearly audibile with amplification. Wearing often marked out preceding entries and used quotation marks instead
of reiterating the same words in successive entries. For each wake, the entire entry should be read starting with
the time and including any words that have been marked out so long as they are legible. They should be read
approximately 30 seconds into the waking state once the lights have reached a relatively stable state. In the case of
an installation, the readings may be prerecorded.

Lamentationes Hieremiae Prophetae (quinque vocum) of Orlando de Lassus: Wearing was an expert in
the music of Lassus. Lamentationes Hieremiae Prophetae for five voices consists of nine pieces used as sources in
the opera. A subsets of these sources are played during each wake, filtered through a low pass filter, and attenuated
according to a the rich-get-richer algorithm.

Toy model of a 60 cycle hum: One of the sonic elements is a toy model of a 60 cycle hum. This is generated by
an interpolating oscillator reading (60 times per second) a buffer filled with random sample values between -1 and
1. The buffer is then passed through a low pass filter. Nine of these models are instantiated: one corresponding to
each of the Lamentations.

Sustained tones / ensemble: The lights also function as an animated score for the performers. During the drone,
the performers follow the first set of nine lights (one for each performer) described in the section on the visual
elements above. When their corresponding light flashes the may play a long, tonefading in and out from nothing or
a very lower volume. For the waking states, the players follow the second set,of lights (presented to the left in the
generated video version) using the brightness of the light to determine the, relative volume. Note that this part is
also synthesized / doubled with sine tones by the SuperCollider program. The pitches of the tones should correspond
to octave equivalence of the frequencies programmed in the application which are based on prime harmonics of 60
hertz give as follows in terms of frequency ratio with respect-te.60 hertz: 2, 3/2, 5/4, 7/4, 11/8, 13/8, 17/16, 19/16,
and 23/16. Note that the tones, in prime order, correspond directly to the order of the Lamentations. That is,
2 corresponds to Lamentation 1.1, 3/2 corresponds to’Tiamentation 1.2, 5/4 corresponds to Lamentation 1.3, 7/4
corresponds to Lamentation 2.1, etc.

SuperCollider program

As mentioned in the description of the rich-gét-righer algorithm, the code of the SuperCollider program intends to
be a complete description of the processes ‘andweontrols of the elements of the piece. To date the program does not
have a graphical user interface and.is controlled by keycodes given in the code. The wake and fade times can be
automated or triggered manually. The signals that control the virtual lights may be piped to an arduino for use
with real lights.

To launch the applicationy exectite remembering_clive_wearing_main.scd in SuperCollider after booting the server
(on linux, this is achieved by préssing cmd-+enter with the cursor anywhere within the code block). To run the
synthesis processes,press cmd+r (note that this will start the piece if automation is on).

The source code for the application is appended at the end of this score and can be can be downloaded from a git
repository at httpstu//www.github.com/mwinter80/remembering_clive_wearing. Audio files of recordings of the
Lassus Lamentations need to be placed in the audio/ folder and named alphabetically / numerically such that the
Lamentations get loaded in their proper order.

The generation of this document (using LaTex) contain version dates in order to help track changes and the git
repository will also detail commit changes. The piece was written using SuperCollider version 3.8.0.

version generated: 2017.11.16

0~ O Ul W N =

DN N DN NN N o = e e
T W N = OO

NN N
— O © W

Y OUR W N

0

UL W N

DO D) = e e e
S © 00~

NN NN N
O W N

[CECEN)
© 00

remembering_clive_wearing_main.scd

(

// MAIN LAUNCH

/*

Loads necessary files and definitions

When starting over, best to reboot server and intepreter

No GUI, just keycodes:

<ctrl + f> = enter full screen, <esc> = exit full screen

<ctrl + r> = run synth, <ctrl + p> = pause synth

<ctrl + s> = trigger start / fade in, <ctrl + e> = trigger end / fade out, <ctrl + t> = #Frigger wake

When automate == 1 (true), the trigger keys are disabled and the following lists in theWSystthDef are used:
startTimes, wakeTimes, and endTimes

This launches the synth in a paused state to give the user time to put the visuals \in/fall screen.
To start the synth, <ctrl + r> must be executed

*/

var automate = 1;

var dir = thisProcess.nowExecutingPath.dirname;

“fadeInTrigBus = Bus.control(s); “wakeTrigBus = Bus.control(s); ~fade@utTrigBus = Bus.control (s);

"remembering.clive_wearing.visuals.scd".loadRelative (true, {
"remembering.clive_wearing_.synthdef.scd".loadRelative (true, {
var fileCount = 0, samples;
PathName (dir +/+ "../audio").files.postln;
samples = PathName (dir +/+ n../audio").files.sort({arg a, b;
a.fileName.toLower < b.fileName.toLowek, }).collect ({|file]
Buffer.read(s, file.fullPath, acfion: {
if (fileCount == 8, { ffickek =\Synth.newPaused (\flicker,
[\automate, dutomate, \bufs, samples,
\fadeMTrigBu&Num, ~fadeInTrigBus,
XfadepBZrigBusNum, ~fadeOutTrigBus,
\wakéTrigBusNum, “wakeTrigBus]l)}, {});
fileCount = fiileCountt,1;

hi

remembering_clive_wearing_main.scd

(
// SYNTHDEF
SynthDef (\flicker, {,|automate’= 1, bufs = #(0, 1, 2, 3, 4, 5, 6, 7, 8],
fadeInTrigBusNum =.0, fadeOutTrigBusNum = 2, wakeTrigBusNum = 1|
/7 Vérs "~
// fadeInTimes, fiadeOutTimes, wakeTimes according to example in score with 1 minute delay
// start timeg //fade ins

var fadeInTimes = [1, 50] =% 60;

// end times / fade outs (must be same length as fadeInTimes with fadeInTimes[i] < fadeOutTimes([i])

var fadeOutTimes = [47, 106] * 60;

// These are the times to wake up with a flourish of activity and the reading of an entry in the journal
var wakeTimes = [4, 9, 17, 24, 34, 44, 53, 57, 73, 97, 101] = 60;

// These are the frequency ratios of the ensemble parts

var freqRatios = [2, 3/2, 5/4, 7/4, 11/8, 13/8, 17/16, 19/16, 23/16];

// Triggers

var fadelInTrigs, wakeUpTrigs, fadeOutTrigs;

// Rich—get—richer vars

var pulse, state, runningPulseCount, norms, wealthGainLag, probs, selects;

// Control signal vars

var energy, switches, switchesSmoothed;

// Sonification vars

var lamentations, hums, ensemble, drone, fadeIn, fadeInOutEnv, wakeEnv, fadeOut;

// Timed trigger

var timedTrigger = {|times‘ Chanqed.kr(EnvGen.kr(Env.step({|i| i % 2} ! (times.size + 1)
times.differentiate ++ [0.01]), Impulse.kr(0)))};

// Monitor time

var sTrig, sCount, secs, mins;

Y/ Triggers ~7°°7°

// Triggers for fadeInTimes

fadeInTrigs = Select.kr (automate, [InTrig.kr (fadeInTrigBusNum), timedTrigger.value (fadeInTimes)]);

// Triggers for fadeOutTimes

fadeOutTrigs = Select.kr (automate, [InTrig.kr (fadeOutTrigBusNum), timedTrigger.value (fadeOutTimes)]);

// Triggers for wakeTimes

wakeUpTrigs = Select.kr (automate, [InTrig.kr (wakeTrigBusNum), timedTrigger.value (wakeTimes)]);

Vo Rich—Get—Richer Algorithm ~~ 77~

// Update resolution

pulse = Impulse.kr (30);

// State of consciousness: asleep or awake; a wake up lasts 60 seconds plus a bit of a tail

state = EnvGen.kr (Env.sine(60), wakeUpTrigs);

// Binary representation of which element was selected

selects = Localln.kr(9);

// Running sum of the times each of the 9 elements has been selected over 120 pulses
runningPulseCount = RunningSum.kr (pulse % selects * (state > 0), (ControlRate.ir / 30) = 120);
// Normalize the counts over 121 pulses (adding a 1 in the wake states so probs is always > 1)
norms = ((0.925 % (state > 0) + 0.075 + runningPulseCount) / 129);

// Goes from 0 to 1 over several pulses after an element is chosen ending with 1 to 4 lights on favoring 2 or 3
wealthGainlag = pow ((PulseCount.kr (pulse, selects) /
TWChoose.kr (wakeUpTrigs, [1, 2, 3, 41, [1, 2, 2, 11, 1)).clip, 4);

// Probabilities such that the rich get richer except directly after an element is selected
probs = {|i| pow(norms[i] * wealthGainLag[i], state = 4)} ! 9;
// Select an element
selects = TWindex.kr (pulse, probs, 1);
// Feedback binary representation
LocalOut.kr ({|i] (i <= selects) * (selects <=1i) } ! 9);
/)T Control Signals "~~~
// The norms are basically the amount of energy to each element
energy = nNorms;
// In a toy model manner, this mimics voltage to the system
switches = {|i| TRand.kr(0, 1, pulse) < energyl[i]} ! 9;
// Smooths the signal such that the lag time is greater as the element gets righer
switchesSmoothed = {|i| Lag2.kr(switches[i], 0.25 + (0.75 % energy[il]))} ! 9;
/)T Sonification ~777"
// Playback of the Lassus Lamentations with a LPF as to not overwhelm to overdlIP€ound
// Each of the Lamentations as a 2 in 3 chance of sounding
lamentations = {|i| LPF.ar (PlayBuf.ar (2, bufs[i], 1, wakeUpTrigs,
TIRand.kr (0, BufFrames.ir (bufs[i]), wakeUpTrigs), 1), 2880) =%
switchesSmoothed[i] % TWChoose.kr (wakeUpTrigs, [0, 11, [1,.27, 1)} ! 9;
// Toy model of an electric hum
hums = {|i| var buf = Array.fill(256, {1.0.rand2}).as(LocalBufuclear);
LPF.ar (Osc.ar (buf, 60, 0), 960) = switchesSmoothed[i]} N9;
// Sustained tones based on energy to that element

ensemble = {|i| SinOsc.ar (240 x freqRatios[i], 0) « efiergylil} ! 9;
// Drone in sleep state that gets attenuated in waké “gtate
drone = {|i| var harm = pow(2, 2 — (i / 3).trunc)s amp = (1~ (0.75 » energy.sum)) * (1 / pow(harm,

SinOsc.ar (60 * harm + TRand.kr(—3, 3, switches[i])4 O, amp)} r9;

/7T Mix ~7777
// Fade ins (10 secs) / outs (30 secs)
fadeInOutEnv = EnvGen.kr (Env.asr (10, 1, 30, \sine),
Latch.kr (Select.kr (fadeOutTrigs,~[1,20]),” fadeInTrigs + fadeOutTrigs));
// Fade wake sounds in and out based (on tetal ehergy in the system
wakeEnv = pow (0.8 x energy.sum + 042, 4);
// Final mix currently set to outputystereo/where the multiplier is the final output level
// Send to separate channel for more dentrol of the indivuals sounds (e.g. with a mixer)
// The lamentations of a 50 4mS0 chance’of sounding at all
Out.ar([0,1], Mix.new(lamentations)“% fadeInOutEnv * wakeEnv = 0.8 % TIRand.kr (0, 1, wakeUpTrigs));
Out.ar([0,1], Mix.new (hums), » fadeInOutEnv x wakeEnv = 0.075);
Out.ar([0,1], Mix.new(ensemble) = fadeInOutEnv * wakeEnv = 0.12);
Out.ar([0,1], Mix.new(drene) x fadeInOutEnv x 0.2);
/7T Visualizafion Comtrol ~~~°~
// Send signalgeto visuallZer (these could be sent and scaled appropriated to control real lights)
{|i]| SendTrig.kr(pulSe, i, switchesSmoothed[i] x fadeInOutEnv)} ! 9;
{|i]| SendTrig.kr(pulse, i + 9, energy[i] = fadeInOutEnv * wakeEnv)} ! 9;

/)T Mohitor Time ~~°7~

sTrig = PulseDivider.kr (pulse, 30); sCount = PulseCount.kr(sTrig);
secs = sCount % 60; mins = (sCount / 60).trunc;

Poll.kr(sTrig, mins + (secs / 100), "time (min.secs)");

}) .send(s);

)

remembering_clive_wearing_main.scd

(

// VISUALS

// Init vars and window

var projectionWin, scoreWin, osc_func, run = true, blend = {O} L 27;

projectionWin = Window.new ("Lamentations I: Remembering Clive Wearing", Rect (500, 500, 750, 500)).front;

projectionWin.background = Color.black;

// Keybinds (these can be change if conflicting with system keybinds)
projectionWin.view.keyDownAction = { |doc, char, mod, unicode, keycode, key|

}i

case
// <ctrl + f> = enter full screen

{mod == 262144 && key == 70} {projectionWin.fullScreen}

// <esc> = exit full screen

{mod == 0 && key == 16777216} {projectionWin.endFullScreen}
// <ctrl + r> = run synth

{mod == 262144 && key == 82} { flicker.run}

// <ctrl + p> = pause synth

{mod == 262144 && key == 80} { flicker.run(false)}

// <ctrl + s> = start / fade in

{mod == 262144 && key == 83} { fadeInTrigBus.set (1)}

// <ctrl + e> = end / fade out

{mod == 262144 && key == 69} { fadeOutTrigBus.set (1)}

// <ctrl + t> = trigger wake

{mod == 262144 && key == 84} { wakeTrigBus.set (1)}

// Get control signals from SynthDef
osc_func = OSCFunc.new({arg msg, time; blend[msg[2]] = msg[3]},'/tr', s.addr) ;

// Draw the window
projectionWin.drawFunc = {

var projectionRect = projectionWin.view.bounds;
{|i| var outerLen, vPad, outerSquare;
outerLen = projectionRect.width / 2;
vPad = projectionRect.height — outerLen;

36 outerSquare = projectionRect.insetBy (outerlLen * i, vPad / 2).resizeTo (outerLen, outerLen);
37 outerSquare = outerSquare.insetBy (outerLen x 0.05,

38 outerLen % 0.05).resizeTo(outerLen x 0.9, outerLen * 0.9);

39 {|j| var innerLen, innerSquare;

40 innerLen = outerSquare.width / 3;

41 innerSquare = outerSquare.insetBy (innerLen x (j % 3),

42 innerLen * (j / 3).trunc).resizeTo(innerlen, innerlLen);

43 Pen.addOval (innerSquare) ;

44 Pen.fillRadialGradient (innerSquare.center, innerSquare.center,

45 (innerSquare.width / 16), (innerSquare.width / 2),

46 Color.black.blend(Color.new255 (255, 214, 170, 255), pow(b drl * 9) + 3jl1, 0.5)),
47 Color.black);

48 }ro}r2

49 | '}

50 | projectionWin.refresh;

51

52 | // Refresh function

53 | { while { run } { projectionWin.refresh; 30.reciprocal.wait; } }.fork(AppCl(R)\

54)

x.)

