
Remembering Clive Wearing
an installation-opera

michael winter (mexico city, mx; 2017)

Acclaimed musician and musicologist Clive Wearing suffers from one of the worst known cases of amnesia after
contracting herpes encephalitis. Wearing’s caretakers encouraged him to keep a journal. Remembering Clive Wearing
is an installation-opera that sets entries from Clive Wearing’s journal. At intervals prescribed by the journal itself,
entries are read and accompanied by a sonic and visual flickering / flourish of activity using recordings of Orlando
de Lassus’ nine Lamentationes Hieremiae Prophetae (as Wearing was an expert in the music of Lassus), sustained
noises and tones, as well as lights. The piece intends to reverently reflect the importance of memory on our lives
and personal identity.

Setting

The piece should be presented in a very dark, preferably pitch black space. Perhaps as an installation.

Selecting journal entries and timings of the waking states / flourishes

The central metaphor of the piece is the act of occasionally waking up into brief states of consciousness from long
periods of unconsciousness. The timings of these waking states are derived by the times in Wearing’s journal.

In a given performance, at least five entries should be selected. It is preferred to select sets of successive entries
with timings that occur within a range suitable for the length of the performance, which should last at least thirty
minutes but could go on for much longer (or indefinitely in the case of an installation). There are often long stints
between entries. Therefore, multiple series of entries (even from different days / pages) can be selected. As explained
in more detail below, any successive groupings of entries will be accompanied by a continuous drone. In the case
that an interval between entries is too long to be faithfully observed or a switch is made to another series of entries,
the drone fades to silence and then fades back in to indicate the start of the next entry or series of entries. Provided
below is an example sequence of times and entries.

0:00 (fade in drone)
0:03 (wake) 10:08 am Now I am superlatively awake. First time awake for years. Patience Begins.
0:08 (wake) 10:13 am Now I am overwhelmingly awake. First time for years.
0:16 (wake) 10:21 am A gente liedown.
0:23 (wake) 10:28 am Actually I am now first time awake for years. Patience observedly needed.
0:33 (wake) 10:38 am Actually I am now awake for the first time for years. Patience begins so I may

see everything. First thought: I adore Deborah forever.
0:43 (wake) 10:48 am I am now totally, perfectly awake. First time for years. Patience begins fully

observed.
0:46 (fade out drone)

0:49 (fade in drone)
0:52 (wake) 7:47 am This illness has been like death. Till now. All senses work. First thought:

I love darling Deborah forever. Our father.
0:56 (wake) 7:51 am First conscious stroll
1:12 (wake) 8:07 am I am totally, perfectly awake. First time. Breakfast
1:36 (wake) 8:31 am Now I am really completely awake. First time. Patience.
1:40 (wake) 8:35 am Time to see relaxing TV.
1:45 (fade out drone)

Rich-get-richer algorithm

All parameters of the piece are controlled by an algorithm that models the sociological effect of the rich-get-richer.
In short: the more an element is chosen, the more likely it is to be chosen. The exception is that immediately after an
element is chosen, the probability that it is chosen over the next few trials is diminished. This allows, metaphorically
speaking, multiple elements to accumulate wealth as opposed to only one garnering all the wealth. This algorithm
works by making selections thirty times a second and keeping track of the number of times a given element (of nine
in this particular case) is selected over a window of time. The count is then normalized and smoothed to control
volume of the sonic elements and intensity of the visual elements. The algorithm was originally programmed in
SuperCollider. The computer program, particularly the few lines of code that run the rich-get-richer algorithm, is
thoroughly commented throughout with the intention that the code, in and of itself, documents and expresses the
algorithm in complete detail.

1

Visual elements

The visual elements of the piece consist of eighteen lights that are controlled programmatically by the rich-get-richer
algorithm. There are two sets of nine lights. In each set, each light corresponds to one of the nine Lamentations.
One set is governed by impulses (smoothed over time) with frequencies based on the counts of the rich-get-richer
algorithm. This creates a stochastic flickering effect. The other set is governed more directly by the counts themselves
creating longer fades. While the SuperCollider application generates live video that can be projected onto a wall,
it is possible, or rather preferred, to use the signals to control real lights (e.g. with an Arduino) instead of, or in
addition to, the projection. In the generated video (a screenshot of which is shown above), each set of nine lights is
presented in a square matrix, the first set described above is on the left while the second is on the right. For real
lights, incandescent bulbs with tungsten filaments should be used (or covers that produce a similar color). Further,
with real lights, the setting can be designed to utilize the entire space by spreading the lights apart.

Sonic elements

Prelude: The piece may be preceded by a brief statement about memory that relates to Wearing’s condition. This
could also be in the form of an accompanying program note. For example, the statement / program note could
include quotations by people who have written about memory or Wearing himself (such as Colin Blakemore, Oliver
Sacks, or Wearing’s wife at the time of the incident Deborah Wearing). A text may also be written especially for a
given performance.

Drone: For a majority of the performance there is a drown which is only attenuated during the waking states and
silences between sets of journal entries. The drone consists of nine sine tones corresponding to each of the nine
Lamentations. The Lamentations are actually grouped in three sets of three: prima, segunda, and tertia. The
three sine tones corresponding to the prima Lamentations are centered around 60 hertz, the three sine tones corre-
sponding to the segunda Lamentations are centered around 240 hertz (two octaves above), and the three sine tones
corresponding to the tertia Lamentations are centered around 960 hertz. During the non-waking states, impulses
occasionally trigger a change in frequency (plus / minus 3 hertz from the center frequency) of the corresponding
sine tone thus changing the overall beating pattern.

Readings of the journal entries: The entries should be read in a rather undramatic (almost solemn) voice. The
text should be clearly audible with amplification. Wearing often marked out preceding entries and used quotation
marks instead of reiterating the same words in successive entries. For each wake, the entire entry should be read
starting with the time and including any words that have been marked out so long as they are legible. They should
be read approximately 30 seconds into the waking state once the lights have reached a relative stability. In the case
of an installation, the readings may be prerecorded.

2

Lamentationes Hieremiae Prophetae (quinque vocum) of Orlando de Lassus: Wearing was an expert in
the music of Lassus. Lamentationes Hieremiae Prophetae for five voices consists of nine pieces used as sources in
the opera. A subsets of these sources are played during each wake, filtered through a low pass filter, and attenuated
according to a the rich-get-richer algorithm.

Toy model of a 60 cycle hum: One of the sonic elements is a toy model of a 60 cycle hum. This is generated by
an interpolating oscillator reading (60 times per second) a buffer filled with random sample values between -1 and
1. The buffer is then passed through a low pass filter. Nine of these models are instantiated: one corresponding to
each of the Lamentations.

Sustained tones / ensemble: The lights also function as an animated score for the performers. During the
drone, the performers follow the first set of nine lights (one for each performer) described in the section on the
visual elements above. Occasionally, when their corresponding light flashes, they may play a long tone fading in
and out from nothing or a very low volume (however, the general texture should remain sparse). For the waking
states, the players follow the second set of lights (presented to the right in the generated video version) interpreting
the brightness of the light as loudness of the tone. Note that this part is also synthesized / doubled with sine
tones by the SuperCollider program. The pitches of the tones should correspond to octave equivalences of the
frequencies programmed in the application which are based on prime harmonics of 60 hertz given as follows in terms
of frequency ratio with respect to 60 hertz: 2, 3/2, 5/4, 7/4, 11/8, 13/8, 17/16, 19/16, and 23/16. Note that the
tones, in prime order, correspond directly to the order of the Lamentations. That is, 2 corresponds to Lamentation
1.1, 3/2 corresponds to Lamentation 1.2, 5/4 corresponds to Lamentation 1.3, 7/4 corresponds to Lamentation 2.1,
etc.

SuperCollider program

As mentioned in the description of the rich-get-richer algorithm, the code of the SuperCollider program intends to
be a complete description of the processes that control all the elements of the piece. To date, the program does not
have a graphical user interface and is controlled by keycodes given in the code. The wake and fade times can be
automated or triggered manually. The signals that control the virtual lights may also be piped to an Arduino for
use with real lights. Currently, the code would still need to be updated to playback recordings of the readings of
the journal for an installation setting.

To launch the application, execute remembering_clive_wearing_main.scd in SuperCollider after booting the
server (on Linux, this is achieved by pressing cmd+enter with the cursor anywhere within the code block). To run
the synthesis processes, press cmd+r (note that this will start the piece if automation is on).

The source code for the application is appended at the end of this score and can be can be downloaded from a
git repository at https://gitea.unboundedpress.org/mwinter/remembering_clive_wearing. Audio
files of recordings of the Lassus Lamentations need to be placed in the audio/ folder and named alphabetically /
numerically such that the Lamentations get loaded in their proper order.

The generation of this document (using LaTex) contain version dates in order to help track changes and the git
repository will also detail commit changes. The piece was written using SuperCollider version 3.8.0.

Arduino with AC dimmer circuit

The current version of the SuperCollider code includes code that will send messages to an Arduino controlling an AC
dimmer circuit. This particular circuit will only work with incandescent bulbs, not LEDs. A schematic by Robert
Twomey is provided below as well as the Arduino code. The circuit consists of one zero cross detector and up to 18
optoisolated light dimmers (the piece could be done with projection and 9 real lights, but, again, using 18 real lights
is preferred). The schematic is built for 120 volts, but works with 240 volts if another 33k resistor is added between
pin 2 of the H11AA1 optocoupler and AC neutral. There is also a small change that must be made in the Arduino
code that is documented accordingly. Similarly, for 240 volts, bulbs with a higher voltage rating would need to be
used. The circuit will also work with dimmable leds because the circuit converting the signal from an AC dimmer
and control the led accordingly is contained within the bulb. Generally leds are not ideal because of the color of the
light and the dimming mechanism is different, however there are dimmable leds available that look reasonably close
to classic incandescent lights. Finally, there are minBrightness and maxBrightness variables in the SuperCollider
code to limit and the range of values sent to the Arduino which can be adjusted for different types of lights.

version generated: 2019.09.22

3

remembering clive wearing main.scd

1 (
2 // MAIN LAUNCH
3 /*
4 Loads necessary files and definitions
5 When starting over, best to reboot server and intepreter
6
7 No GUI, just keycodes:
8 <ctrl + f> = enter full screen, <esc> = exit full screen
9 <ctrl + r> = run synth, <ctrl + p> = pause synth

10 <ctrl + s> = trigger start / fade in, <ctrl + e> = trigger end / fade out, <ctrl + t> = trigger wake
11
12 When ˜arduino == 1 (true), the app assumes that an arduino is reachable, otherwise errors will be thrown
13
14 When automate == 1 (true), the trigger keys are disabled and the following lists in the SynthDef are used:
15 startTimes, wakeTimes, and endTimes
16
17 This launches the synth in a paused state to give the user time to put the visuals in full screen.
18 To start the synth, <ctrl + r> must be executed
19 */
20
21 var dir = thisProcess.nowExecutingPath.dirname;
22 var automate = 1;
23 ˜arduino = 1;
24 ˜fadeInTrigBus = Bus.control(s); ˜wakeTrigBus = Bus.control(s); ˜fadeOutTrigBus = Bus.control(s);
25 "remembering_clive_wearing_visuals.scd".loadRelative(true, {
26 "remembering_clive_wearing_synthdef.scd".loadRelative(true, {
27 var fileCount = 0, samples;
28 PathName(dir +/+ "../audio").files.postln;
29 samples = PathName(dir +/+ "../audio").files.sort({arg a, b;
30 a.fileName.toLower < b.fileName.toLower }).collect({|file|
31 Buffer.read(s, file.fullPath, action: {
32 if(fileCount == 8, {˜flicker = Synth.newPaused(\flicker,
33 [\automate, automate, \bufs, samples,
34 \fadeInTrigBusNum, ˜fadeInTrigBus,
35 \fadeOutTrigBusNum, ˜fadeOutTrigBus,
36 \wakeTrigBusNum, ˜wakeTrigBus])}, {});
37 fileCount = fileCount + 1;
38 });
39 });
40 });
41 });
42)

remembering clive wearing synthdef.scd

1 (
2 // SYNTHDEF
3 SynthDef(\flicker, { |automate = 1, bufs = #[0, 1, 2, 3, 4, 5, 6, 7, 8],
4 fadeInTrigBusNum = 0, fadeOutTrigBusNum = 2, wakeTrigBusNum = 1|
5 //˜˜˜˜˜ Vars ˜˜˜˜˜
6 // fadeInTimes, fadeOutTimes, wakeTimes according to example in score with 1 minute delay
7 // start times / fade ins
8 var fadeInTimes = [1, 50] * 60;
9 // end times / fade outs (must be same length as fadeInTimes with fadeInTimes[i] < fadeOutTimes[i])

10 var fadeOutTimes = [47, 106] * 60;
11 // These are the times to wake up with a flourish of activity and the reading of an entry in the journal
12 var wakeTimes = [4, 9, 17, 24, 34, 44, 53, 57, 73, 97, 101] * 60;
13 // These are the frequency ratios of the ensemble parts
14 var freqRatios = [2, 3/2, 5/4, 7/4, 11/8, 13/8, 17/16, 19/16, 23/16];
15 // Triggers
16 var fadeInTrigs, wakeUpTrigs, fadeOutTrigs;
17 // Rich-get-richer vars
18 var pulse, state, runningPulseCount, norms, wealthGainLag, probs, selects;
19 // Control signal vars
20 var energy, switches, switchesSmoothed;
21 // Sonification vars
22 var lamentations, hums, ensemble, drone, fadeIn, fadeInOutEnv, wakeEnv, fadeOut;
23 // Timed trigger
24 var timedTrigger = {|times| Changed.kr(EnvGen.kr(Env.step({|i| i % 2} ! (times.size + 1),
25 times.differentiate ++ [0.01]), Impulse.kr(0)))};
26 // Monitor time
27 var sTrig, sCount, secs, mins;
28
29 //˜˜˜˜˜ Triggers ˜˜˜˜˜
30 // Triggers for fadeInTimes
31 fadeInTrigs = Select.kr(automate, [InTrig.kr(fadeInTrigBusNum), timedTrigger.value(fadeInTimes)]);
32 // Triggers for fadeOutTimes
33 fadeOutTrigs = Select.kr(automate, [InTrig.kr(fadeOutTrigBusNum), timedTrigger.value(fadeOutTimes)]);
34 // Triggers for wakeTimes
35 wakeUpTrigs = Select.kr(automate, [InTrig.kr(wakeTrigBusNum), timedTrigger.value(wakeTimes)]);
36
37 //˜˜˜˜˜ Rich-Get-Richer Algorithm ˜˜˜˜˜
38 // Update resolution
39 pulse = Impulse.kr(30);
40 // State of consciousness: asleep or awake; a wake up lasts 60 seconds plus a bit of a tail
41 state = EnvGen.kr(Env.sine(60), wakeUpTrigs);
42 // Binary representation of which element was selected
43 selects = LocalIn.kr(9);
44 // Running sum of the times each of the 9 elements has been selected over 120 pulses
45 runningPulseCount = RunningSum.kr(pulse * selects * (state > 0), (ControlRate.ir / 30) * 120);
46 // Normalize the counts over 121 pulses (adding a 1 in the wake states so probs is always > 1)

4

47 norms = ((0.925 * (state > 0) + 0.075 + runningPulseCount) / 129);
48 // Goes from 0 to 1 over several pulses after an element is chosen ending with 1 to 4 lights on favoring 2 or 3
49 wealthGainLag = pow((PulseCount.kr(pulse, selects) /
50 TWChoose.kr(wakeUpTrigs, [1, 2, 3, 4], [1, 2, 2, 1], 1)).clip, 4);
51 // Probabilities such that the rich get richer except directly after an element is selected
52 probs = {|i| pow(norms[i] * wealthGainLag[i], state * 4)} ! 9;
53 // Select an element
54 selects = TWindex.kr(pulse, probs, 1);
55 // Feedback binary representation
56 LocalOut.kr({|i| (i <= selects) * (selects <= i) } ! 9);
57
58 //˜˜˜˜˜ Control Signals ˜˜˜˜˜
59 // The norms are basically the amount of energy to each element
60 energy = norms;
61 // In a toy model manner, this mimics voltage to the system
62 switches = {|i| TRand.kr(0, 1, pulse) < energy[i]} ! 9;
63 // Smooths the signal such that the lag time is greater as the element gets richer
64 switchesSmoothed = {|i| Lag2.kr(switches[i], 0.25 + (0.75 * energy[i]))} ! 9;
65
66 //˜˜˜˜˜ Sonification ˜˜˜˜˜
67 // Playback of the Lassus Lamentations with a LPF as to not overwhelm to overall sound
68 // Each of the Lamentations as a 2 in 3 chance of sounding
69 lamentations = {|i| LPF.ar(PlayBuf.ar(2, bufs[i], 1, wakeUpTrigs,
70 TIRand.kr(0, BufFrames.ir(bufs[i]), wakeUpTrigs), 1), 2880) *
71 switchesSmoothed[i] * TWChoose.kr(wakeUpTrigs, [0, 1], [1, 2], 1)} ! 9;
72 // Toy model of an electric hum
73 hums = {|i| var buf = Array.fill(256, {1.0.rand2}).as(LocalBuf.clear);
74 LPF.ar(Osc.ar(buf, 60, 0), 960) * switchesSmoothed[i]} ! 9;
75 // Sustained tones based on energy to that element
76 ensemble = {|i| SinOsc.ar(240 * freqRatios[i], 0) * energy[i]} ! 9;
77 // Drone in sleep state that gets attenuated in wake state
78 drone = {|i| var harm = pow(2, 2 - (i / 3).trunc), amp = (1 - (0.75 * energy.sum)) * (1 / pow(harm, 2));
79 SinOsc.ar(60 * harm + TRand.kr(-3, 3, switches[i]), 0, amp)} ! 9;
80
81 //˜˜˜˜˜ Mix ˜˜˜˜˜
82 // Fade ins (10 secs) / outs (30 secs)
83 fadeInOutEnv = EnvGen.kr(Env.asr(10, 1, 30, \sine),
84 Latch.kr(Select.kr(fadeOutTrigs, [1, 0]), fadeInTrigs + fadeOutTrigs));
85 // Fade wake sounds in and out based on total energy in the system
86 wakeEnv = pow(0.8 * energy.sum + 0.2, 4);
87 // Final mix currently set to output stereo where the multiplier is the final output level
88 // Send to separate channel for more control of the indivuals sounds (e.g. with a mixer)
89 // The lamentations of a 50 / 50 chance of sounding at all
90 Out.ar([0,1], Mix.new(lamentations) * fadeInOutEnv * wakeEnv * 0.8 * TIRand.kr(0, 1, wakeUpTrigs));
91 Out.ar([0,1], Mix.new(hums) * fadeInOutEnv * wakeEnv * 0.075);
92 Out.ar([0,1], Mix.new(ensemble) * fadeInOutEnv * wakeEnv * 0.12);
93 Out.ar([0,1], Mix.new(drone) * fadeInOutEnv * 0.2);
94
95 //˜˜˜˜˜ Visualization Control ˜˜˜˜˜
96 // Send signals to visualizer (these could be sent and scaled appropriated to control real lights)
97 {|i| SendTrig.kr(pulse, i, switchesSmoothed[i] * fadeInOutEnv)} ! 9;
98 {|i| SendTrig.kr(pulse, i + 9, energy[i] * fadeInOutEnv * wakeEnv)} ! 9;
99

100 //˜˜˜˜˜ Monitor Time ˜˜˜˜˜
101 sTrig = PulseDivider.kr(pulse, 30); sCount = PulseCount.kr(sTrig);
102 secs = sCount % 60; mins = (sCount / 60).trunc;
103 Poll.kr(sTrig, mins + (secs / 100), "time (min.secs)");
104 }).send(s);
105)

remembering clive wearing visuals.scd

1 (
2 // VISUALS
3 // Init vars and window
4 var projectionWin, arduino_port, osc_func, brightness = {0} ! 27, refresh_func;
5 projectionWin = Window.new("Remembering Clive Wearing", Rect(500, 500, 750, 500)).front;
6 projectionWin.background = Color.black;
7
8 // Keybinds (these can be change if conflicting with system keybinds)
9 projectionWin.view.keyDownAction = { |doc, char, mod, unicode, keycode, key|

10 case
11 // <ctrl + f> = enter full screen
12 {mod == 262144 && key == 70} {projectionWin.fullScreen}
13 // <esc> = exit full screen
14 {mod == 0 && key == 16777216} {projectionWin.endFullScreen}
15 // <ctrl + r> = run synth
16 {mod == 262144 && key == 82} {refresh_func.fork(AppClock); ˜flicker.run}
17 // <ctrl + p> = pause synth
18 {mod == 262144 && key == 80} {˜flicker.run(false)}
19 // <ctrl + s> = start / fade in
20 {mod == 262144 && key == 83} {˜fadeInTrigBus.set(1)}
21 // <ctrl + e> = end / fade out
22 {mod == 262144 && key == 69} {˜fadeOutTrigBus.set(1)}
23 // <ctrl + t> = trigger wake
24 {mod == 262144 && key == 84} {˜wakeTrigBus.set(1)}
25 };
26
27 // Connect arduino; edit first arg / port to match index or name of port: SerialPort.listDevices
28 if(˜arduino == 1, { arduino_port = SerialPort("/dev/ttyACM0", 115200)}, {});
29
30 // Get control signals from SynthDef
31 osc_func = OSCFunc.new({arg msg, time; brightness[msg[2]] = msg[3]; },'/tr', s.addr);

5

32
33 // Draw the window
34 projectionWin.drawFunc = {
35 var projectionRect = projectionWin.view.bounds;
36 {|i| var outerLen, vPad, outerSquare;
37 outerLen = projectionRect.width / 2;
38 vPad = projectionRect.height - outerLen;
39 outerSquare = projectionRect.insetBy(outerLen * i, vPad / 2).resizeTo(outerLen, outerLen);
40 outerSquare = outerSquare.insetBy(outerLen * 0.05,
41 outerLen * 0.05).resizeTo(outerLen * 0.9, outerLen * 0.9);
42 {|j| var innerLen, innerSquare;
43 innerLen = outerSquare.width / 3;
44 innerSquare = outerSquare.insetBy(innerLen * (j % 3),
45 innerLen * (j / 3).trunc).resizeTo(innerLen, innerLen);
46 Pen.addOval(innerSquare);
47 Pen.fillRadialGradient(innerSquare.center, innerSquare.center,
48 (innerSquare.width / 16), (innerSquare.width / 2),
49 Color.black.blend(Color.new255(255, 214, 170, 255), pow(brightness[(i * 9) + j], 0.5)),
50 Color.black);
51 } ! 9 } ! 2
52 };
53 projectionWin.refresh;
54
55
56 // Refresh function
57 refresh_func = { while { true } {
58 // updateProjection
59 projectionWin.refresh;
60
61 if(˜arduino == 1, {
62 // set min and max Brightness between 0 and 1 depending on wattage of light
63 // it is best to keep the min slightly higher than 0 to keep the light from turning completely off
64 {|i| var minBrightness = 0.15, maxBrightness = 0.65;
65 arduino_port.put(i);
66 arduino_port.put(253);
67 arduino_port.put(((((brightness[i] * (maxBrightness - minBrightness)) + minBrightness) - 1).abs * 256).

asInteger);
68 arduino_port.put(254);
69 } ! 18 }, {});
70
71 // delay
72 30.reciprocal.wait; } };
73)

6

AC dimmer circuit schematic

remembering clive wearing arduino.scd

1
2 #inc lude <TimerOne . h> // Inc lude Timer1 l i b r a r y
3
4 // Pin outputs f o r the 18 l i g h t s
5 i n t AC p in o f f s e t s [1 8] = {22 , 24 , 26 , 28 , 30 , 23 , 25 , 27 , 29 , 32 , 34 , 36 , 38 , 31 , 33 , 35 , 37 , 39} ;
6 i n t f r e q = 50 ; // 50 f o r EU and 60 f o r US
7 in t dims [1 8] ; // dimmer va lues
8 unsigned char c l o c k t i c k ; // va r i ab l e f o r Timer1
9 char incomingByte ;

10 i n t va l = 0 ;
11 i n t l i g h t = 0 ;
12 i n t del im = 0 ;
13
14 void setup () {
15 Serial . begin (115200) ;
16 f o r (i n t i = 0 ; i < 18 ; i++){
17 dims [i] = 215 ;
18 pinMode (AC p in o f f s e t s [i] , OUTPUT) ;
19 } ;
20 a t ta ch In t e r rupt (0 , z e r o c r o s s s i n t , RISING) ;
21 Timer1 . i n i t i a l i z e (1000000 / (f r e q ∗ 2) / 256) ; // 8 b i t c on t r o l
22 Timer1 . a t t a ch In t e r rupt (t ime r I s r) ; // attach the s e r v i c e rou t ine here
23 }
24
25 // t h i s i s the dimmer
26 void t ime r I s r () {
27 c l o c k t i c k++;
28 f o r (i n t i = 0 ; i < 18 ; i++) {
29 i f (dims [i] == c l o c k t i c k) {
30 d i g i t a lWr i t e (AC p in o f f s e t s [i] , HIGH) ; // t r i a c on
31 delayMicroseconds (10) ; // t r i a c On propogat ion delay (f o r 60Hz use 8 . 33 , f o r 50Hz use 10)
32 d i g i t a lWr i t e (AC p in o f f s e t s [i] , LOW) ; // t r i a c o f f
33 }
34 } ;
35 }
36
37 // func t i on to be f i r e d at the zero c r o s s i n g to dim the l i g h t
38 void z e r o c r o s s s i n t () {
39 c l o c k t i c k =0;
40 }
41
42 void loop () {
43 i f (Serial . a v a i l a b l e () > 0) { // something came ac ro s s s e r i a l
44 whi le (1) {
45 incomingByte = Serial . read () ;
46 i f (incomingByte == −1) {break ; } ;
47 i f (incomingByte < 0) { va l = 256 + incomingByte ;} e l s e { va l = incomingByte ; } ;
48 i f (va l == 253) {delim = 1 ; cont inue ; } ;
49 i f (va l == 254) {delim = 0 ; cont inue ; } ;
50 i f (del im == 0) l i g h t = val ;
51 i f (del im == 1) dims [l i g h t] = va l ;
52 }
53 }
54 }

7

